

SA44 and SA124 Application
Programming Interface (API)
Programmers Reference Manual

Signal Hound | Overview 1

SA44 and SA124 Application Programming Interface (API)
Programmers Reference Manual

 2017, Signal Hound, Inc.
35707 NE 86th Ave

La Center, WA 98629 USA

Version 3
February 7, 2017

Requirements, Operation, Function Definitions, Examples

This information is being released into the public domain in accordance with the Export Administration
Regulations 15 CFR 734

2 Overview | Signal Hound

Table of Contents

Overview ...4

Contact Information ... 4

Build/Version Notes ...4

Version 3.0.0 .. 5

Requirements ..5

Setup and Initialization ..5

Theory of Operation ...5

Opening a Device ... 6
First Time Opening a New Device .. 6

Configuring the Device ... 6
Initiating the Device ... 6
Retrieve Data from the Device ... 7
Abort the Current Mode .. 7
Closing the Device .. 7

Modes of Operation ...7

Swept Analysis ... 7
Real-Time Analysis ... 8
IQ Streaming .. 8
Audio Demodulation .. 9
Scalar Network Analysis ... 9

API Functions ... 10

saGetSerialNumberList .. 10
saOpenDevice .. 10
saOpenDeviceBySerialNumber .. 11
saCloseDevice .. 11
saPreset.. 12
saSetCalFilePath ... 12
saGetSerialNumber .. 13
saGetFirmwareString ... 14
saGetDeviceType ... 14
saConfigAcquisition .. 15
saConfigCenterSpan ... 15
saConfigLevel ... 16
saConfigGainAtten ... 16
saConfigSweepCoupling ... 17
saConfigRBWShape .. 18
saConfigProcUnits .. 19
saConfigIQ .. 19
saConfigAudio .. 20
saConfigRealTime ... 21
saConfigRealTimeOverlap .. 22
saSetTimebase ... 22
saInitiate .. 23
saAbort ... 24
saQuerySweepInfo ... 24

Signal Hound | Overview 3

saQueryStreamInfo .. 25
saQueryRealTimeFrameInfo .. 25
saQueryRealTimePoi .. 26
saGetSweep ... 26
saGetPartialSweep ... 27
saGetRealTimeFrame ... 28
saGetIQ .. 29
saGetIQData ... 30
saGetIQDataUnpacked ... 31
saGetAudio... 31
saQueryTemperature ... 32
saQueryDiagnostics .. 33
saAttachTg ... 33
saIsTgAttached ... 34
saConfigTgSweep ... 34
saStoreTgThru .. 35
saSetTg ... 35
saSetTgReference .. 36
saGetTgFreqAmpl .. 37
saConfigIFOutput ... 37
saGetAPIVersion .. 38
saGetErrorString .. 39

Error Handling ... 39

Device Connection Errors .. 39

Appendix ... 39

Setting RBW and VBW ... 39
Setting Gain and Attenuation .. 40
Code Examples ... 40
Programming Languages Other Than C++ (and bools) .. 40
Internal Auto-Calibration ... 41
ARMv7-A Support .. 41

4 Overview | Signal Hound

Overview
This manual is the programmer’s reference for the Signal Hound SA44 and SA124 series of spectrum
analyzers. The document details the programming interface to these two devices, which will be referred
to throughout this document as the API. The API is a set of C language functions targeting the
SA44/SA124 spectrum analyzers, used to control the devices for frequency domain sweeps and
streaming IQ data. The API is C ABI compatible, so it can be called from a number of other languages and
environments such as Java, C#, Python, C++, Matlab, and Labview.

This manual will describe the requirements and knowledge needed to program to the API. If you are
new to the API you should read the sections in this order: Build/Version Notes, Requirements, Theory of
Operation, and Modes of Operation.

If you want to start programming immediately, the appendix contains a number of code examples, and
you can reference the rest of the manual when you need to.

The Build/Version Notes details the available builds for the API and notes major changes to API versions.
The Requirements section details the physical and operational needs to use the API.
The Theory of Operation section details how to interface the device and covers every major component
a program will implement when interfacing a Signal Hound spectrum analyzer.
The Modes of Operation section attempts to teach you how to use the device in each of its operational
modes, from the required functions, to interpreting the data the device returns.
The API Functions section covers every function in depth. The knowledge learned in the Theory and
Modes of Operation sections will help you navigate the API functions.
The Appendix provides various code examples and tips.

Contact Information
We are interested in your feedback and questions. Please report any issues/bugs as soon as possible.
We will maintain the most up to date API on our website. We encourage any and all criticisms or ideas.
We would love to hear how you might improve the API.

All programming and API related questions should be directed to aj@signalhound.com
All hardware/specification related questions should be directed to justin@teplus.com

You can also contact us via phone, 1-800-260-8378.

Build/Version Notes
Two Windows builds are available for 32 and 64 bit operating systems. The builds are compiled with
Visual Studio 2012. Distributing an application using this library will require distributing the VS2012
redistributable libraries. The libraries are distributed as Windows DLL files.

A Linux ARMv7-A build is available, tested on the Raspberry Pi 2. This limited version requires a factory
firmware upgrade for firmware versions 2.10, 3.10, and 3.11. See Appendix:ARMv7-A Support for more
information.

The SA-series drivers should automatically install when you install the Spike software. To manually
install the SA-series drivers (e.g. USB-SA44B), navigate to the application folder (where you installed the

mailto:aj@signalhound.com
mailto:justin@teplus.com

Signal Hound | Requirements 5

Spike software) and find the CDM v2.12.00 WHQL Certified.exe file. Right click it and Run as
administrator. Follow the installation instructions

Version 3.0.0
Initial release. Version numbering will begin at 3.0.0 to signify this is the 3rd major iteration on the
SA44/SA124 programming interface. While not a direct descendant of previous versions, there is a large
amount of work that is borrowed from earlier versions of the APIs that it is to be considered this to be a
derivative work.

The programming interface has drastically changed from previous versions. It is now similar to our BB60
product programming interfaces. The interface is modeled roughly after the IviSpecAn specification.

Requirements
Windows Development Requirements
Below is a list of requirements needed to begin.

 Windows 7/8/10. The API is untested outside these operating systems.

 Windows C/C++ development tools/environment. Preferably Visual Studio 2008 or later. If Visual
Studio 2012 is not used, then the VS2012 redistributables will need to be installed.

 The sa_api.h API header file.

 The API library (sa_api.lib) and dynamic library (sa_api.dll) files.

 USB Driver: CDM v2.12.00 WHQL Certified.exe from FTDI

 The ftd2xx.dll will need to be present in the same directory or installed on the system path.

ARM v7-A Development Requirements
See the included README in the ARM SDK for full development requirements.

General Requirements

 A basic understanding of RF Spectrum Analysis.

 A Signal Hound SA44 or SA124 spectrum analyzer.

Setup and Initialization
The API requires two calibration files to exist on the host PC before the API will work correctly. To
understand how this is performed, read the sections Opening a Device and First Time Opening a New
Device.

Theory of Operation
The flow of any program interfacing a Signal Hound device will be as follows.

1) Open a USB 2.0 connected SA44/SA124 spectrum analyzer and obtain a unique handle to the
device. The handle will be used for all subsequent function calls.

2) Configure the device, such as setting the frequency sweep ranges or the IQ sample rate.
3) Initiate the device for a particular mode of operation, whether it be frequency domain sweeps

or IQ streaming.
4) Get data from the device. Which functions are called and what data is returned depends on the

mode of operation.

6 Theory of Operation | Signal Hound

5) Abort the current mode of operation
6) Close the device

The API provides functions for each step in this process. We have strived to mimic the functionality and
naming conventions of SCPIs IviSpecAn Class Specification where possible. It is not necessary to be
familiar with this specification but those who are should feel comfortable with our API immediately. The
following sections further detail each of the six steps listed above.

Opening a Device
Before attempting to open a device programmatically, it must be physically connected to a USB 2.0 port
with the provided cable. Ensure the power light is lit on the device and is solid green. Once the device is
connected it can be opened. The function saOpenDevice() and saOpenDeviceBySerialNumber()
provides this functionality. This function returns an integer ID to the device which was opened. Up to
eight devices may be connected and interfaced through our API using the IDs. The integer ID returned is
required for every function call in the API, as it uniquely identifies which device you are interfacing.

First Time Opening a New Device
All Signal Hound SA series spectrum analyzers need two calibration files to operate. These files reside on
internal flash memory for newer models, and on older models, on the SignalHound.com web server. The
files are copied to the host machine the first time a device is opened on a particular machine. The files
are saved at C:/ProgramData/SignalHound/cal_files. For models which need the calibration data from
the Signal Hound server, the first time the device is opened the host PC needs to have an active network
connection. Downloading this file from our server, or pulling it from the device internal flash can cause
the first invocation of saOpenDevice() to block for up to 10 seconds. Once these files are on a host PC
this process does not need to be performed again. If the devices have been used in the standard Signal
Hound application, then the calibration files will already exist on the host PC.

Configuring the Device
Once the device is opened, it may be configured. The API provides a number of configuration routines
for its many operating states. Configuration routines modify the device global state, such as the sweep
frequency or IQ sampling rate. The configurations do not take effect until the device is initiated.

Initiating the Device
Each device has two states.

1) A global state set through the API configure routines.
2) An operational/running state.

All configurations functions modify the global state which does not immediately affect the operation of
the device. Once you have configured the global state to your liking, you may re-initiate the device into a
mode of operation, in which the global state is copied into the running state. At this point, the running
state is separate and not affected by future configuration function calls.

The saInitiate() function is used to initialize the device and enter one of the operational modes. The
device can only be in one operational mode at a time. If saInitiate() is called on a device that is
already initialized, the current mode is aborted before entering the new specified mode.

Signal Hound | Modes of Operation 7

Retrieve Data from the Device
Once a device has been successfully initiated you can begin retrieving data from the device. Every mode
of operation returns different types, and different amounts of data. The Modes of Operation section will
help you determine how to collect data from the API for any given mode. Helper routines are also used
for certain modes to determine how much data to expect from the device.

Abort the Current Mode
Aborting the operation of the device is achieved through the saAbort() function. This causes the
device to cancel any pending operations and return to an idle state. Calling saAbort() explicitly is
never required. If you attempt to initiate an already active device, saAbort() will be called for you.
Also if you attempt to close an active device, saAbort() will be called. There are a few reasons you may
wish to call saAbort() manually though.

- Certain modes combined with certain settings consume large amounts of resources such as
memory and the spawning of many threads. Calling saAbort() will free those resources.

- Certain modes such as Real-Time Spectrum Analysis consume many CPU cycles, and they are
always running in the background whether or not you are collecting and using the results they
produce.

- Aborting an operational mode and spending more time in an idle state may help to reduce
power consumption.

Closing the Device
When you are finished, you must call saCloseDevice(). This function attempts to safely close the USB
2.0 connection to the device and clean up any resources which may be allocated. A device may also be
closed and opened multiple times during the execution of a program. This may be necessary if you want
to change USB ports, or swap a device.

Modes of Operation
Now that we have seen how a typical application interfaces with the API, let’s examine the different
modes of operation the API provides. Each mode will accept different configurations and have different
boundary conditions. Each mode will also provide data formatted to match the mode selected. In the
next sections you will see how to interact with each mode.

For a more in-depth examination of each mode of operation (read: theory) refer to the Signal Hound
spectrum analyzer user manual.

Swept Analysis
Swept analysis represents the most traditional form of spectrum analysis. This mode offers the largest
amount of configuration options, and returns traditional frequency domain sweeps. A frequency domain
sweep displays amplitude on the vertical axis and frequency on the horizontal axis.

The configuration routines which affect the sweep results are

 saConfigAcquisition() – Configuring the detector and linear/log scaling

 saConfigCenterSpan() – Configuring the sweep frequency range

 saConfigLevel() – Configuring reference level for automatic gain and
attenuation

 saConfigGainAtten() – Configuring internal amplifiers and attenuators

8 Modes of Operation | Signal Hound

 saConfigSweepCoupling() – Configuring RBW and VBW

 saConfigProcUnits() – Configure VBW processing

Once you have configured the device, you will call saInitiate() using the SA_SWEEPING flag.

This mode is driven by the programmer, causing a sweep to be collected only when the program
requests one through the saGetSweep() functions. The length of the sweep is determined by a
combination of resolution bandwidth, video bandwidth, and span.

Once the device is initialized you can determine the characteristics of the sweep you will be collecting
with saQuerySweepInfo(). This function returns the length of the sweep, the frequency of the first bin,
and the bin size. You will need to allocate two arrays of memory, representing the minimum and
maximum values for each frequency bin.

Now you are ready to call the saGetSweep() and saGetPartialSweepFunctions().

You can determine the frequency of any bin in the resulting sweep by the function below where ‘n’ is
the zero based index into the sweep array.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑛′𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑠𝑤𝑒𝑒𝑝 = 𝑠𝑡𝑎𝑟𝑡𝐹𝑟𝑒𝑞 + 𝑛 ∗ 𝑏𝑖𝑛𝑆𝑖𝑧𝑒

Real-Time Analysis
The API provides the functionality of an online real-time spectrum analyzer for the full instantaneous
bandwidth of the device (250kHz). In real-time FFTs are applied at an overlapping rate of 87.5%.

The configuration routines which affect the spectrum results are the same for swept analysis, but span is
restricted to 250kHz.

The number of sweep results far exceeds a program’s capability to acquire, view, and process, therefore
the API combines sweeps results for a user specified amount of time. It does this in two ways. One, is
the API either max holds or averages the sweep results into a standard sweep. Also the API creates an
image frame which acts as a density map for every sweep result processed during a period of time. Both
the sweep and density map are returned at rate specified by the function saConfigRealTime. For a full
example of using real-time see Appendix: Code Examles: Real-Time Mode.

IQ Streaming
The API is capable of providing programmers with a continuous stream of digital IQ samples from the
device. The digital IQ stream consists of interleaved 32-bit floating point IQ pairs scaled to mW. The
digital samples are amplitude corrected providing accurate measurements. The IQ data rate at its
highest is 486.111111~ kS/s and can be decimated down by a factor of up to 128 (in powers of two).
Each decimation value further reduces the overall bandwidth of the IQ samples, so the API also provides
a configurable bandpass filter to control the overall passband of a given IQ data stream. The IQ data
stream can also be tuned to an arbitrary center frequency.

Configuration routines used to prepare streaming are

 saConfigCenterSpan() – Set the center frequency of the IQ data stream. Span is
ignored.

 saConfigLevel() – Set the expected input level.

Signal Hound | Modes of Operation 9

 saConfigGainAtten() – See Appendix: Setting Gain and Attenuation.

 saConfigIQ() – Specify the decimation and bandwidth of the IQ data stream.

Once configured, initialize the device with the SA_IQ mode. Data acquisition begins immediately. The
API buffers ~3/4 second worth of digital samples in circular buffers. It is the responsibility of the user
application to poll the samples via saGetIQData() fast enough to prevent the circular buffers from
wrapping. We suggest a separate polling thread and synchronized data structure(buffer) for retrieving
the samples and using them in your application.

NOTE: Decimation / Filtering / Calibration occur on the PC and can be processor intensive on certain
hardware. Please characterize the processor load if you think this might be an issue for your application.

Audio Demodulation
Audio demodulation can be achieved using saConfigAudio, saInitiate, and saGetAudio. See
saConfigAudio to see which types of audio demodulation can be performed.

saConfigAudio is used to specify the type of demodulation and the characteristics of the filters. The
center frequency is specified in saConfigAudio. Audio demodulation does not have auto ranging as does
other operational modes, so saConfigGainAtten must be called to configure the internal gain,
attenuator, and preamplifier. Once desired settings are chosen, call saInitiate with the SA_AUDIO mode
flag to begin streaming audio.

Once the device is streaming, use saGetAudio to retrieve 4096 audio samples for an audio sample rate
of 30382. The API buffers many seconds worth of audio.

Scalar Network Analysis
When a Signal Hound tracking generator is paired together with a spectrum analyzer, the products can
function as a scalar network analyzer to perform insertion loss measurements, or return loss
measurements by adding a directional coupler. Throughout this document, this functionality will be
referred to as tracking generator (or TG) sweeps.

Scalar Network Analysis can be realized by following these steps

1. Ensure a Signal Hound spectrum analyzer and tracking generator is connected to your PC.
2. Open the spectrum analyzer through normal means.
3. Associate a tracking generator to a spectrum analyzer by calling saAttachTg. At this point, if a TG

is present, it is claimed by the API and cannot be discovered again until saCloseDevice is called.
4. Configure the device as normal, setting sweep frequencies and reference level (or manually

setting gain and attenuation).
5. Configure the TG sweep with the saConfigTgSweep function. This function configures TG sweep

specific parameters.
6. Call saInitiate with the SA_TG_SWEEP mode flag.
7. Get the sweep characteristics with saQuerySweepInfo.
8. Connect the SA and TG device into the final test state without the DUT and perform one sweep

with saGetSweep or saGetPartialSweep. After one full sweep has returned, call saStoreTgThru
with the TG_THRU_0DB flag.

10 API Functions | Signal Hound

9. (Optional) Configure the setup again still without the DUT but with a 20dB pad inserted into the
system. Perform an additional full sweep and call saStoreTgThru with the TG_THRU_20DB.

10. Once store through has been called, insert your DUT into the system and then you can freely call
the get sweep functions until you modify the configuration or settings.

If you modify the test setup or want to re-initialize the device with a new configuration, the store
through must be performed again.

For a full code example, see the Appendix : Scalar Network Analysis Sweep.

API Functions

saGetSerialNumberList
Get a list of available devices connected to the PC

saStatus saGetSerialNumberList(int serialNumbers[8], int *deviceCount);

Parameters

serialNumbers A pointer to an array of at minimum 8 contiguous 32-bit integers. It is
undefined behavior if this array pointed to by serialNumbers is not 8
integers in length.

deviceCount Pointer to a 32-bit integer.

Description

This function returns the devices that are unopened in the current process. Up to 8 devices max will be
returned. The serial numbers of the unopened devices are returned. The array will be populated starting
at index 0 of the provided array. The integer pointed to by deviceCount will equal the number of devices
reported by this function upon returning.

Return Values

saNoError The function returned successfully.

saNullPtrErr One or more pointer parameters were NULL.

saOpenDevice
Open one Signal Hound device

saStatus saOpenDevice(int *device);

Parameters

device Pointer to 32-bit integer variable. If this function returns successfully,
the value device points to will contain a unique handle value to the
device opened. This number is used for all successive API function calls.

Signal Hound | API Functions 11

Description

This function attempts to open the first SA44/SA124 it detects. If a device is opened successfully, a
handle to the device will be returned through the device pointer which can be used to target that device
for other API calls.

This function when successful, takes about 5 seconds to perform. If it is the first time a device is opened
on a host PC, this function can potentially take much longer. See First Time Opening a New Device.

Return Values

saNoError The function returned successfully.

saNullPtrErr The device parameter is NULL.

saDeviceNotFoundErr A valid Signal Hound device was not found.

saInternetErr This error is returned if the API is unable to acquire the calibration files
from the Signal Hound server. Read First Time Opening a New Device for
more information.

saOpenDeviceBySerialNumber
Open one Signal Hound device

saStatus saOpenDeviceBySerialNumber(int *device, int serialNumber);

Parameters

device Pointer to 32-bit integer variable. If this function returns successfully,
the value device points to will contain a unique handle value to the
device opened. This number is used for all successive API function calls.

serialNumber User provided serial number.

Description

This function is similar to saOpenDevice() except you can specify the serial number of the device you
wish to open. Everything else is identical.

Return Values

See saOpenDevice() for return values.

saCloseDevice
Close one Signal Hound device

saStatus saCloseDevice(int device);

Parameters

device Device handle.

Description

This function is called when you wish to terminate a connection with a device. Any resources the device
has allocated will be freed and the USB 2.0 connection to the device is terminated. The device closed

12 API Functions | Signal Hound

will be released and will become available to be opened again. Any activity the device is performing is
aborted automatically before closing.

Return Values

saNoError The device closed successfully.

saDeviceNotOpenErr The device specified is not open.

saPreset
Trigger a device preset

saStatus saPreset(int device);

Parameters

device Device handle.

Description

This function exists to invoke a hard reset of the device. This will function similarly to a power
cycle(unplug/re-connect the device). This might be useful if the device has entered an undesirable or
unrecoverable state. This function might allow the software to perform the reset rather than ask the
user perform a power cycle.

Functionally, in addition to a hard reset, this function closes the device as if saCloseDevice was called.
This means the device handle becomes invalid and the device must be reopened for use.

This function is a blocking call and takes about 2.5 seconds to return.

Return Values

saNoError Function completed successfully, the device will be reset.

saDeviceNotOpen The device specified is not currently open.

Example

// This short function shows how to preset a device in the

// quickest way possible. Both saPreset and saOpenDevice

// are blocking calls. It may be preferred to perform this

// function in a separate thread.

saStatus PresetDevice(int *device_id)

{

 saPreset(*device_id);

 return saOpenDevice(device_id);

}

saSetCalFilePath
Specify the directory where the calibration files will reside.
Only call this function if you wish to change the default calibration file directory.

saStatus saSetCalFilePath(const char *path);

Signal Hound | API Functions 13

Parameters

path Relative or absolute path specifying the directory in which the API will
look for and store the SA44 and SA124 calibration files, specifically the
.bin and .tep files. Set to NULL (zero) to revert to the default path.

Description

This function should be called before opening the device. Ideally it should be the first function called in a
program interfacing the device. The path specified should be suffixed with the ‘/’ or ‘\\’ character
denoting that it is a directory. Failure to append a slash character will result in undesired behavior.

See examples of usage below.

When a device is opened, the API will look in the supplied path for the required calibration files. If the
folder does not exist, it will be created. If the files do not exist in the folder, they will be acquired from
the device flash memory where applicable, and for all other devices downloaded from the Signal Hound
web server. The files will be placed in the supplied directory for future use. If the files exist in the
directory, they will simply be loaded into memory.

This function does not need to be called, as it will use a default system path, typically
C:/ProgramData/SignalHound/cal_files/

Examples

To set the working directory as the calibration file path call the function as
saSetCalFilePath(“.\\”);

To set an absolute path, you might call the function like so
saSetCalFilePath(“C:\\ProgramData\\SignalHound\\CalFiles\\”);

Return Values

This function always returns saNoError. Providing a bad directory path will result in undefined behavior.

saGetSerialNumber
Retrieve the serial number of a specified device

saStatus saGetSerialNumber(int device, int *serial);

Parameters

device Device handle.

serial Pointer to a 32-bit integer which will be assigned the serial number of
the device specified.

Description

This function may be called only after the device has been opened. The serial number returned should
match the number on the case.

14 API Functions | Signal Hound

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr The parameter serial is NULL.

saGetFirmwareString
Get a firmware version string of a device

saStatus saGetFirmwareString(int device, char firmwareString[16]);

Parameters

device Device handle.

firmwareString Pointer to a char array. The array should be at minimum 16 chars in
length.

Description

Use this function to determine the firmware version of a specified device.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr The parameter firmwareString is NULL.

saGetDeviceType
Retrieve the model type of a specified device

saStatus saGetDeviceType(int device, saDeviceType *type);

Parameters

device Device handle.

type Pointer to an integer to receive the model type.

Description

This function may be called only after the device has been opened. If the device handle is valid, type will
contain the model type of the device pointed to by handle.

type is an enumerated value of type saDeviceType. saDeviceType is defined in sa_api.h.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr The parameter type is NULL.

Signal Hound | API Functions 15

saConfigAcquisition
Change the detector type and choose between linear or log scaled returned sweeps

saStatus saConfigAcquisition(int device, int detector, int scale);

Parameters
device Device handle.

detector Specifies the video detector. The two possible values for detector are
SA_MIN_MAX and SA_AVERAGE.

scale Specifies the scale in which sweep results are returned int. The four
possible values for scale are SA_LOG_SCALE, SA_LIN_SCALE,
SA_LOG_FULL_SCALE, and SA_LIN_FULL_SCALE.

Description

detector specifies how to produce the results of the signal processing for the final sweep. Depending on
settings, potentially many overlapping FFTs will be performed on the input time domain data to retrieve
a more consistent and accurate final result. When the results overlap detector chooses whether to
average the results together, or maintain the minimum and maximum values. If averaging is chosen, the
min and max sweep arrays will contain the same averaged data.

The scale parameter will change the units of returned sweeps. If SA_LOG_SCALE is provided sweeps will
be returned in amplitude unit dBm. If SA_LIN_SCALE is return, the returned units will be in millivolts. If
the full scale units are specified, no corrections are applied to the data and amplitudes are taken directly
from the full scale input.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saInvalidDetectorErr The detector value provided does not match the list of accepted values.

saInvalidScaleErr The scale provided does not match the list of accepted values.

saConfigCenterSpan
Change the center and span frequencies

saStatus saConfigCenterSpan(int device, double center, double span);

Parameters

device Device handle.

center Center frequency in hertz.

span Span in hertz.

Description

This function configures the operating frequency band of the device. Start and stop frequencies can be
determined from the center and span.

16 API Functions | Signal Hound

- start = center – (span / 2)
- stop = center + (span / 2)

The values provided are used by the device during initialization and a more precise start frequency is
returned after initiation. Refer to saQueryTraceInfo() for more information.

Each device has a specified operational frequency range between some minimum and maximum
frequency. The limits are defined in sa_api.h. The center and span provided cannot specify a sweep
outside of this range.

Certain modes of operation have specific frequency range limits. Those mode dependent limits are
tested against during saInitiate() and not here.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saFrequencyRangeErr The calculated start or stop frequencies fall outside of the operational
frequency range of the specified device. This error will also be returned
when span is smaller than 1Hz.

saConfigLevel
Change the reference level of the device

saStatus saConfigLevel(int device, double ref);

Parameters

device Device handle.

ref Reference level in dBm.

Description

This function is best utilized when the device attenuation and gain is set to automatic(default). When
both attenuation and gain are set to AUTO, the API uses the reference level to best choose the gain and
attenuation for maximum dynamic range. The API chooses attenuation and gain values best for
analyzing signal at or below the reference level. For this reason, to achieve the best results, ensure gain
and attenuation are set to AUTO and your reference level is set at or slightly about your expected input
power for best sensitivity. Reference level is specified in dBm units.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saParameterClamped The provided reference level exceeded and was clamped to 20 dBm.

saConfigGainAtten
Change the RF/IF gain and attenuation of the device

Signal Hound | API Functions 17

saStatus saConfigGain(int device, int atten, int gain, bool preamp);

Parameters

device Device handle.

atten Attenuator setting.

gain Gain setting.

preamp Specify whether to enable the internal device pre-amplifier.

Description

To set attenuation or gain to automatic, pass SA_AUTO_GAIN and SA_AUTO_ATTEN as parameters. The
preamp parameter is ignored when gain and attenuation are automatic and is chosen automatically.

atten paremeter

Supplied Parameter SA44 Attenuation SA124 Attenuation

SA_AUTO_ATTEN (-1) Auto Auto

0 0 dB 0 dB

1 5 dB 10 dB

2 10 dB 20 dB

3 15 dB 30 dB

gain paremeter

Supplied Parameter Gain

SA_AUTO_GAIN (-1) Auto

0 16 dB Attenuation

1 Mid-Range

2 12 dB Digital Gain

By default, if this function is not called, gain and attenuation are set to automatic. It is suggested to
leave these values as automatic as it will greatly increase the consistency of your results. If you choose
to manually control gain and attenuation please read Appendix: Setting Gain and Attenuation.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saParameterClamped The provided gain or attenuation values were clamped to normal
operating ranges.

saConfigSweepCoupling
Configure sweep processing characteristics

saStatus saConfigSweepCoupling(int device, double rbw, double vbw, bool reject);

Parameters

device Handle to the device being configured.

18 API Functions | Signal Hound

rbw Resolution bandwidth in Hz. RBW can be arbitrary.

vbw Video bandwidth in Hz. VBW must be less than or equal to RBW. VBW
can be arbitrary. For best performance use RBW as the VBW.

reject Indicates whether to enable image rejection.

Description

The resolution bandwidth, or RBW, represents the bandwidth of spectral energy represented in each
frequency bin. For example, with an RBW of 10 kHz, the amplitude value for each bin would represent
the total energy from 5 kHz below to 5 kHz above the bin’s center.

The video bandwidth, or VBW, is applied after the signal has been converted to frequency domain as
power, voltage, or log units. It is implemented as a simple rectangular window, averaging the amplitude
readings for each frequency bin over several overlapping FFTs. A signal whose amplitude is modulated at
a much higher frequency than the VBW will be shown as an average, whereas amplitude modulation at
a lower frequency will be shown as a minimum and maximum value.

Available RBWs are [0.1Hz – 100kHz] and 250kHz. For the SA124 devices, a 6MHz RBW is available as
well. Not all RBWs will be available depending on span, for example the API may restrict RBW when a
sweep size exceeds a certain amount. Also there are many hardware limitations that restrict certain
RBWs, for a full list of these restrictions, see the Appendix:Setting RBW and VBW.

The parameter reject determines whether software image reject will be performed. The SA-series
spectrum analyzers do not have hardware-based image rejection, instead relying on a software
algorithm to reject image responses. See the USB-SA44B or USB-SA124B manuals for additional details.
Generally, set reject to true for continuous signals, and false to catch short duration signals at a known
frequency. To capture short duration signals with an unknown frequency, consider the Signal Hound
BB60C.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saBandwidthErr rbw or vbw falls outside possible input range.

 vbw is greater than resolution bandwidth.

saConfigRBWShape
Specify the RBW filter shape

saStatus saConfigRBWShape(int device, int rbwShape);

Parameters

device Device handle.

rbwShape An acceptable RBW filter shape value, either SA_RBW_SHAPE_FLATTOP
or SA_RBW_SHAPE_CISPR.

Description

Signal Hound | API Functions 19

Specify the RBW filter shape, which is achieved by changing the window function. When specifying
SA_RBW_SHAPE_FLATTOP, a custom bandwidth flat-top window is used measured at the 3dB cutoff
point. When specifying SA_RBW_SHAPE_CISPR, a Gaussian window with zero-padding is used to achieve
the specified RBW. The Gaussian window is measured at the 6dB cutoff point.

Return Values

saNoError The function returned successfully.

saInvalidParameterErr The rbwShape parameter does not match an acceptable input value.

saConfigProcUnits
Configure video processing unit type

saStatus saConfigProcUnits(int device, int units);

Parameters

device Device handle.

units The possible values are SA_POWER_UNITS, SA_LOG_UNITS,
SA_VOLT_UNITS, and SA_BYPASS.

Description

The units provided determines what unit type video processing occurs in. The chart below shows which
unit types are used for each units selection.

For “average power” measurements, SA_POWER_UNITS should be selected. For cleaning up an amplitude
modulated signal, SA_VOLT_UNITS would be a good choice. To emulate a traditional spectrum analyzer,
select SA_LOG_UNITS. To minimize processing power and bypass video bandwidth processing, select
SA_BYPASS.

SA_LOG_UNITS dBm

SA_VOLT_UNITS mV

SA_POWER_UNITS mW

SA_BYPASS No video processing

Return Values

saNoError The function returned successfully.

saDeviceNotOpen The device specified is not open.

saInvalidParameterErr The value for units did not match any known value.

saConfigIQ
Configure the digital IQ data stream

saStatus saConfigIQ(int device, int decimation, double bandwidth);

20 API Functions | Signal Hound

Parameters

device Device handle.

decimation Specify a decimation rate for the IQ data stream.

bandwidth Specify the band pass filter width on the IQ digital stream.

Description

This function is used to configure the digital IQ data stream. A decimation factor and filter bandwidth
are able to be specified. The decimation rate divides the IQ sample rate directly while the bandwidth
parameter further filters the digital stream.

For any given decimation rate, a minimum filter bandwidth must be applied to account for sufficient
filter roll off. If a bandwidth value is supplied above the maximum for a given decimation, the bandwidth
will be clamped to the maximum value. For a list of possible decimation values and associated
bandwidth values, see the table below.

The base sample rate of the SA44 and SA124 spectrum analyzers is 486.111111 (repeating) kS/s. To get a
precise sample rate given a decimation value, use this equation.

𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 =
486111.11111~

𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛

Return Values

saNoError The function returned successfully.

sDeviceNotOpenErr The device specified is not open.

saInvalidParameterErr The decimation rate is outside the acceptable input range. The
decimation rate is not a power of two.

saConfigAudio
Configure audio demodulation settings

saStatus saConfigAudio(int device, int audioType, double centerfreq, double
bandwidth, double audioLowPassFreq, double audioHighPassFreq, double fmDeemphasis);

Decimation Rate Maximum Bandwidth

1 250.0 kHz

2 225.0 kHz

4 100.0 kHz

8 50.0 kHz

16 20 kHz

32 12.0 kHz

64 5.0 kHz

128 3.0 kHz

Signal Hound | API Functions 21

Parameters

device Handle to the device being configured.

audioType Specifies the demodulation scheme, possible values are SA_AUDIO_AM,
SA_AUDIO_FM, SA_AUDIO_USB, SA_AUDIO_LSB, and SA_AUDIO_CW.

centerFreq Center frequency in Hz of audio signal to demodulate.

bandwidth Intermediate frequency bandwidth centered on freq. Filter takes place
before demodulation. Specified in Hz. Should be between 500Hz and
500kHz.

audioLowPassFreq Post demodulation filter in Hz. Should be between 1kHz and 12kHz.

audioHighPassFreq Post demodulation filter in Hz. Should be between 20 and 1000Hz.

fmDeemphasis Specified in micro-seconds. Should be between 1 and 100. This value is
ignored if audioType is not equal to SA_AUDIO_FM.

Description

This function is used to configure the majority of the audio stream settings. A number of audio
modulation types are supported, and a number of filter parameters can be set.

Below is the overall flow of data through our audio processing algorithm.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saInvalidParameterErr One or more parameters did not match known accepted values.

saConfigRealTime
Configure the real-time frame parameters

saStatus saConfigRealTime(int device, double frameScale, int frameRate);

Parameters

device Device handle.

frameScale Specify the real-time frame height in dB. Values can be between [10 -
200].

frameRate Specify the real-time frame rate in frames per seconds. Values can be
between [4 – 30]

22 API Functions | Signal Hound

Description

The function allows you to configure additional parameters of the real-time frames returned from the
API. If this function is not called a scale of 100dB is used and a frame rate of 30fps is used. For more
information regarding real-time mode see Modes of Operation : Real-Time Analysis.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saParameterClamped One of the parameters supplied was outside the range of acceptable
inputs and was clamped to the range.

saConfigRealTimeOverlap
Configure the real-time processing overlap rate

saStatus saConfigRealTimeOverlap(int device, double advanceRate);

Parameters

advanceRate FFT advance rate. See description.

Description

By setting the advance rate users can control the overlap rate of the FFT processing in real-time
spectrum analysis. The advanceRate parameter specifies how far the FFT window slides through the
data for each FFT as a function of FFT size. An advanceRate of 0.5 specifies that the FFT window will
advance 50% the FFT length for each FFT for a 50% overlap rate. Specifying a value of 1.0 would mean
the FFT window advances the full FFT length meaning there is no overlap in real-time processing. The
default value is 0.125 and the range of acceptable values are between [0.125, 10]. Increasing the
advance rate reduces processing considerably but also increases the 100% probability of intercept of the
device.

Return Values

saParameterClamped Value provided outside the range of acceptable inputs. A value within
the acceptable range was used.

saSetTimebase
Set the timebase reference state of the device

saStatus saSetTimebase(int device, int timebase);

Parameters

device Device handle.

Signal Hound | API Functions 23

timebase Time base setting value. Acceptable inputs are SA_REF_INTERNAL_OUT
and SA_REF_EXTERNAL_IN.

Description

Configure the time base reference port for the device. By passing a value of SA_REF_INTERNAL_OUT you
can output the internal 10MHz time base of the device out on the reference port. By passing a value of
SA_REF_EXTERNAL_IN the API attempts to enable a 10MHz reference on the reference BNC port. If no
reference is found, the device continues to use the internal reference clock. Once a device has
successfully switched to an external reference it must remain using it until the device is closed, and it is
undefined behavior to disconnect the reference input from the reference BNC port.

Return Values

saNoError The function returned successfully. This status will also be returned if
the reference port has been previously successfully configured.

saInvalidDeviceErr The setting provided is not supported on the device specified. See the
markings next to the timebase port to determine supported
functionality.

saExternalReferenceNotFound Unable to find an external reference on the reference BNC port. The
device will continue using the internal reference after this function is
returned.

saInitiate
Change the operating state of the device

saStatus saInitiate(int device, int mode, unsigned int flag);

Parameters

device Device handle.

mode The possible values for mode are SA_IDLE, SA_SWEEPING,
SA_REAL_TIME, SA_IQ, SA_AUDIO, and SA_TG_SWEEP.

flag This value is currently unused. Pass 0 as a parameter.

Description

This function configures the device into a state determined by the mode parameter. For more
information regarding operating states, refer to the Theory of Operation and Modes of Operation
sections. This function calls saAbort() before attempting to reconfigure. It should be noted, if an error
occurs attempting to configure the device, any past operating state will no longer be active and the
device will become idle.

Return Values

saNoError The device returned successfully.

saDeviceNotOpenErr The device specified is not open.

24 API Functions | Signal Hound

saInvalidParameterErr The value for mode did not match any known value.

 In real-time mode, this value may be returned if the span limits defined
in the API header are broken. Also in real-time mode, this error will be
returned if the resolution bandwidth is outside the limits defined in the
API header.

saParameterClamp One or more configuration values were clamped in order to configure
the device into the mode specified.

saBandwidthClamped The resolution or video bandwidth was limited based on supplied span
and/or hardware limitations. The device limited the bandwidth and
continued operation. For a full list of bandwidth restrictions, please see
Appendix: Setting RBW and VBW.

saAbort
Stop the current mode of operation

saStatus saAbort(int device);

Parameters

device Device handle.

Description

Stops the device operation and places the device into an idle state. If the device is currently idle, then
the function returns normally and returns saNoError.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saQuerySweepInfo
Returns values needed to query and analyze traces

saStatus saQuerySweepInfo(int device, int *sweepLength, double *startFreq, double
*binSize);

Parameters

device Device handle.

sweepLength A pointer to a 32-bit integer. If the function returns successfully, the
integer sweepLength points to will contain the size of arrays returned by
the fetch trace functions.

startFreq A pointer to a 64-bit floating point variable. If the function returns
successfully, the variable startFreq points to will equal the frequency of
the first bin in the configured sweep.

Signal Hound | API Functions 25

binSize A pointer to a 64-bit floating point variable. If the function returns
successfully, the variable start points to will contain the frequency
difference between each bin in the configured sweep.

Description

This function should be called to determine sweep characteristics after a device has been configured
and initiated.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr Indicates one or more pointer parameters were equal to NULL.

saNotConfiguredErr The device is not configured for sweeps.

saQueryStreamInfo
Retrieve values needed to query and analyze an IQ data stream
saQueryStreamInfo(int device, int *returnLen, double *bandwidth, double
*samplesPerSecond);

Parameters

device Device handle.

returnLen Pointer to a 32-bit integer. If the function returns successfully, the
variable returnLen points to will contain the number of IQ sample pairs
which will be returned by calling saGetIQ().

bandwidth Pointer to a 64-bit float. If the function returns successfully, the variable
bandwidth points to will contain the bandpass filter bandwidth width in
Hz. Width is specified by the 3dB roll-off points.

samplesPerSecond Pointer to a 32-bit integer. If the function returns successfully, the
variable samplesPerSecond points to will contain the sample rate of the
configured IQ data stream.

Description

Use this function to get the parameters of the IQ data stream.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNotConfiguredErr The device specified is not configured for IQ streaming.

saQueryRealTimeFrameInfo
Query the frame size of the real-time frame

26 API Functions | Signal Hound

saStatus saQueryRealTimeFrameInfo(int device, int *frameWidth, int *frameHeight);

Parameters

device Handle of an initialized device.

frameWidth Pointer to a 32-bit signed integer.

frameHeight Pointer to a 32-bit signed integer.

Description

This function should be called after initializing the device for Real-Time mode. This device returns the
frame size of the real-time frame configured.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr A pointer parameter supplied is equal to NULL.

saNotConfiguredErr The device specified is not configured for real-time mode.

saQueryRealTimePoi
Get the configured 100% probability of intercept of the device configured for real-time spectrum analysis

saStatus saQueryRealTimePoi(int device, double *poi);

Parameters

poi Pointer to double. See description.

Description

When this function returns successfully, the value poi points to will contain the 100% probability of
intercept duration in seconds of the device as currently configured in real-time spectrum analysis. The
device must actively be configured and initialized in the real-time spectrum analysis mode.

Return Values

saNullPtrErr poi parameter is NULL.

saNotConfiguredErr The device specified is not initialized for real-time spectrum analysis.

saGetSweep
Get one full sweep from a configured and initiated device

saStatus saGetSweep_32f(int device, float *min, float *max);
saStatus saGetSweep_64f(int device, double *min, double *max);

Signal Hound | API Functions 27

Parameters

device Device handle.

min Pointer to the beginning of an array of floating point values, whose
length is equal to or greater than sweepLength returned from
saQuerySweepInfo().

max Pointer to the beginning of an array of floating point values, whose
length is equal to or greater than sweepLength returned from
saQuerySweepInfo().

Description

Upon returning successfully, this function returns the minimum and maximum arrays of one full sweep.
If the detector provided in saConfigAcquisition() is SA_AVERAGE, the arrays will be populated with
the same values. Element zero of each array corresponds to the startFreq returned from
saQuerySweepInfo().

Return Values

saNoError The function returned successfully.

saNullPtrErr Indicates that one or both pointer parameters was NULL.

saDeviceNotOpenErr The device specified is not open.

saNotConfiguredErr Indicates the device is idle.

saInvalidModeErr Indicates the device is not configured in one of the sweep mode.

saCompressionWarning This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum input voltage has been reached.
Signal analysis and reconstruction become issues on clipped signals. To
prevent this, a combination of increasing attenuation, decreasing gain,
or increasing reference level(when gain/atten is automatic) will allow
for more headroom.

saUSBCommErr Device connection issues were present in the acquisition of this sweep.
See Error Handling : Device Connection Errors.

saGetPartialSweep
Get a partial sweep from a configured and initiated device

saGetPartialSweep_32f(int device, float *min, float *max, int *start, int *stop);
saGetPartialSweep_64f(int device, double *min, double *max, int *start, int *stop);

Parameters

device Device handle.

min Pointer to the beginning of an array of floating point values, whose
length is equal to or greater than sweepLength returned from
saQuerySweepInfo().

28 API Functions | Signal Hound

max Pointer to the beginning of an array of floating point values, whose
length is equal to or greater than sweepLength returned from
saQuerySweepInfo().

start Pointer to a 32-bit integer variable. If the function returns successfully,
the variable start points to will contain the start index of the updated
portion of the sweep

stop Pointer to a 32-bit integer variable. If the function returns successfully,
the variable stop points to will contain the index+1 of the last update
value in the updated portion of the sweep.

Description

This function is similar to the saGetSweep functions except it can return in certain contexts before the
full sweep is ready. This function might return for sweeps which are going to take multiple seconds,
providing you with only a portion of the results. This might be useful if you want to perform some signal
analysis on portions of the sweep as it is being received, or update other portions of your application
during a long acquisition process. Subsequent calls will always provide the next contiguous portion of
spectrum.

A buffer that can hold the full sweep must be provided. The pointers start and stop are used to
determine which portion of the sweep was updated. The elements in the arrays from [start, stop] will be
updated. start and [stop-1] can be used to index the updated portion of the arrays.

The updated portion of the sweep will always at maximum end at the final element of the sweep. For
example, if only 20 frequency bins remain after the previous call to saGetPartialSweep, the next call will
update at most 20 points. When the final portion of the sweep has been updated, stop will equal the
sweep length. Calling this function again will request and begin the next sweep.

Return Values

See saGetSweep() for a list of return values.

saGetRealTimeFrame
Retrieve one real-time sweep and frame

saStatus saGetRealTimeFrame(int device, float *sweep, float *frame);

Parameters

device Handle to an initialized device configured in real-time mode.

sweep Pointer to a floating point array. If the function returns successfully, the
contents of the array will be a frequency sweep.

frame Pointer to a floating point array. If the function returns successfully, the
contents of the array will contain a single real-time frame.

Description

This function is used to retrieve one real-time frame and sweep. This function should be used instead of
saGetSweep and saGetPartialSweep for real-time mode. The sweep array should be ‘N’ number of value
long, where N is the sweep length returned from saQuerySweepInfo. The frame should be WxH values

Signal Hound | API Functions 29

long where W and H are the values returned from saQueryRealTimeFrameInfo. For more information
see Modes of Operation : Real-Time Analysis.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr One or more of the supplied pointers are NULL.

saNotConfiguredError The device specified is currently idle.

saInvalidModeErr The device specified is not currently configured for real-time mode.

saUSBCommErr Device connection issues were present in the acquisition of this sweep.
See Error Handling : Device Connection Errors.

saCompressionWarning This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum input voltage has been reached.
Signal analysis and reconstruction become issues on clipped signals. To
prevent this, a combination of increasing attenuation, decreasing gain,
or increasing reference level(when gain/atten is automatic) will allow
for more headroom.

saGetIQ
This function has been deprecated. See saGetIQData() for a replacement.

Retrieve raw data from a streaming device

saStatus saGetIQ_32f(int device, float *iq);
saStatus saGetIQ_64f(int device, double *iq);

Parameters

device Handle of a streaming device.

iq A pointer to a floating point array. The contents of this buffer will be
updated with interleaved IQ digital samples.

Description

Retrieve the next array of IQ samples in the stream. The length of the buffer provided to this function is
the return length from saQueryStreamInfo() * 2. saQueryStreamInfo () returns the length as IQ
sample pairs. This function will need to be called ~30 times per second for any given decimation rate for
the internal circular buffers not to fall behind. We recommend polling this function from a separate
thread and not performing any other tasks on the polling thread to ensure the thread does not fall
behind.

The buffer will be populated with alternating IQ sample pairs scaled to mW. The time difference
between each sample can be determined from the sample rate of the configured device.

Return Values

saNoError The function returned successfully.

30 API Functions | Signal Hound

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr One or more supplied parameters is NULL.

saNotConfigureErr The device specified is not configured.

saInvalidModeErr The device specified is not configured for IQ streaming.

saCompressionWarning This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, increase the reference level.

saUSBCommErr Device connection issues were present in the acquisition of data. See
Error Handling : Device Connection Errors.

saGetIQData
Retrieve one block of IQ data specified by the IQ packet struct

saStatus saGetIQData(int device, saIQPacket *pkt);

Parameters

device Handle to the device.

pkt Pointer to a saIQPacket struct.

Description

This function retrieves one block of IQ data as specified by the saIQPacket struct. The members of the
saIQPacket struct are

 iqData – Set by user, Pointer to an array of 32-bit complex float point values. Complex values
are interleaved real-imaginary pairs. This must point to a contiguous block of iqCount complex
values.

 iqCount – Set by user, specify the number of IQ data pairs to return.

 purge – Set by user, specify whether to discard any samples acquired by the API since the last
time the saGetIQData function was called. Set to SA_TRUE if you wish to discard all previously
acquired data, and SA_FALSE if you wish to retrieve the contiguous IQ values from a previous
call to this function.

 dataRemaining – Set by API, how much data is still left buffered in the API.

 sampleLoss – Set by API, returns SA_TRUE or SA_FALSE for whether the API had to drop data
due to the internal circular buffer filling.

 sec – Set by API, the seconds since epoch representing the timestamp of the first sample in the
returned array.

 milli – Set by API, the milliseconds representing the timestamp of the first sample in the
returned array.

The timestamps returned are set by the system clock and should not be used to make absolute
measurements, only relative ones. For large contiguous IQ captures, one should only use the first
timestamp collected and use the index and sample rate to determine the relative time of an individual
sample.

Signal Hound | API Functions 31

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr One or more supplied parameters is NULL.

saNotConfigureErr The device specified is not configured.

saInvalidModeErr The device specified is not configured for IQ streaming.

saCompressionWarning This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, increase the reference level.

saUSBCommErr Device connection issues were present in the acquisition of data. See
Error Handling : Device Connection Errors.

saGetIQDataUnpacked
Retrieve one block of IQ data

saStatus saGetIQDataUnpacked(int device, float *iqData, int iqCount, int purge, int
*dataRemaining, int *sampleLoss, int *sec, int *milli);

Parameters

See description

Description

This function provides an alternate interface to the saGetIQData function. Using this function, you can
eliminate the need for the saIQPacket struct, which eases development of non-C programming language
bindings. (Languages and environments such as LabVIEW, MATLAB, Python, C#, etc.)

The parameters to this function have a one-to-one mapping to the members of the saIQPacket struct.

This function is implemented by populating the saIQPacket struct with the provided parameters and
calling saGetIQData.

Return Values

See saGetIQData.

saGetAudio
Retrieve 4096 audio samples

saStatus saGetAudio(int device, float *audio);

Parameters

device Device handle.

audio Pointer to a 32-bit floating point value array.

32 API Functions | Signal Hound

Description

If the device is initiated and running in the audio demodulation mode, the function is a blocking call
which returns the next 4096 audio samples. The approximate blocking time for this function is 128 ms if
called again immediately after returning. There is no internal buffering of audio, meaning the audio will
be overwritten if this function is not called in a timely fashion. The audio values are typically -1.0 to 1.0,
representing full-scale audio. In FM mode, the audio values will scale with a change in IF bandwidth.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNotConfiguredErr The device is not configured for audio. Ensure the device has been
configured and saInitiate() has been called with the SA_AUDIO
mode flag.

saNullPtrErr The audio pointer is NULL.

saCompressionWarning This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, increase the reference level.

saUSBCommErr Device connection issues were present in the acquisition of data. See
Error Handling : Device Connection Errors.

saQueryTemperature
Retrieve the current internal temperature of the device

saStatus saQueryTemperature(int device, float *temp);

Parameters

device Device handle.

temp Pointer to a 32-bit floating point value. If the function returns
successfully, the value temp points to will contain the current device
temperature.

Description

Requesting the internal temperature of the device cannot be performed while the device is currently
active. To receive the absolute current internal device temperature, ensure the device is inactive by
calling saAbort before calling this function. If the device is active, the temperature returned will be the
last temperature returned from this function.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr The pointer temp does not point to a valid memory location.

Signal Hound | API Functions 33

saQueryDiagnostics
Retrieve the current internal device characteristics

saStatus saQueryDiagnostics(int device, float *voltage);

Parameters

device Device handle.

voltage Pointer to a 32-bit floating point value. If the function returns
successfully the variable voltage points to will contain the current
voltage of the system.

Description

A USB voltage below 4.55V may cause readings to be out of spec. Check your cable for damage and USB
connectors for damage or oxidation.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr The parameter voltage is NULL.

saDeviceNotIdleErr The device is currently active and the voltage cannot be queried. Call
saAbort() before trying again.

saAttachTg
Pairs an open spectrum analyzer with a tracking generator

saStatus saAttachTg(int device);

Parameters

device Device handle.

Description

This function attempts to pair an unclaimed Signal Hound tracking generator with an open Signal Hound
spectrum analyzer.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saTrackingGeneratorNotFound An unclaimed tracking generator was not discovered.

34 API Functions | Signal Hound

saIsTgAttached
Returns whether a tracking generator has been paired with a spectrum analyzer

saStatus saIsTgAttached(int device, bool *attached);

Parameters

device Device handle.

attached Pointer to a boolean variable. If this function returns successfully, the
variable attached points to will contain a true/false value as to whether
a tracking generator is paired with the spectrum analyzer.

Description

This function is a helper function to determine if a tracking generator has been previously paired with
the specified device.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saNullPtrErr The attached parameter is NULL.

saConfigTgSweep
Configure a tracking generator sweep

saStatus saConfigTgSweep(int device, int sweepSize, bool highDynamicRange, bool
passiveDevice);

Parameters

device Device handle.

sweepSize Suggested sweep size.

highDynamicRange Request the ability to perform two store throughs for an increased
dynamic range sweep.

passiveDevice Specify whether the device under test is a passive device (no gain).

Description

This function configures the tracking generator sweeps. Through this function you can request a sweep
size. The sweep size is the number of discrete points returned in the sweep over the configured span.
The final value chosen by the API can be different than the requested size by a factor of 2 at most. The
dynamic range of the sweep is determined by the choice of highDynamicRange and passiveDevice. A
value of true for both provides the highest dynamic range sweeps. Choosing false for passiveDevice
suggests to the API that the device under test is an active device (amplification).

Signal Hound | API Functions 35

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saParameterClamped The parameter sweepSize was limited to the range of 10-1000.

saStoreTgThru
Perform a store thru

saStatus saStoreTgThru(int device, int flag);

Parameters

device Device handle.

flag Specify the type of store thru. Possible values are TG_THRU_0DB and
TG_THRU_20DB.

Description

This function, with flag set to TG_THRU_0DB, notifies the API to use the last trace as a thru (your 0 dB
reference). Connect your tracking generator RF output to your spectrum analyzer RF input. This can be
accomplished using the included SMA to SMA adapter, or anything else you want the software to
establish as the 0 dB reference (e.g. the 0 dB setting on a step attenuator, or a 20 dB attenuator you will
be including in your amplifier test setup).

After you have established your 0 dB reference, a second step may be performed to improve the
accuracy below -40 dB. With approximately 20-30 dB of insertion loss between the spectrum analyzer
and tracking generator, call saStoreTgThru with flag set to TG_THRU_20DB. This corrects for slight
variations between the high gain and low gain sweeps.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saInvalidParameterErr The flag parameter does not match any accepted value.

saNotConfiguredErr The device is not configured for tracking generator sweeps.

saSetTg
Set the frequency and amplitude output of a paired tracking generator

saStatus saSetTg(int device, double frequency, double amplitude);

Parameters

36 API Functions | Signal Hound

device Device handle.

frequency Set the frequency, in Hz, of the TG output

amplitude Set the amplitude, in dBm, of the TG output

Description

This function sets the output frequency and amplitude of the tracking generator. This can only be
performed is a tracking generator is paired with a spectrum analyzer and is currently not configured and
initiated for TG sweeps.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saTrackingGeneratorNotFound A tracking generator was not found to be paired with the device
specified.

saNotConfiguredErr The API is currently configured and initiated for tracking generator
sweeps and the tracking generator cannot be controlled at this time.

saSetTgReference
Configure the timebase for the TG44 and TG124

saStatus saSetTgReference(int device, int reference);

Parameters

reference A valid time base setting value. Possible values are SA_REF_UNUSED,
SA_REF_INTERNAL_OUT, and SA_REF_EXTERNAL_IN.

Description

Configure the time base for the tracking generator attached to the device specified. When
SA_REF_UNUSED is specified additional frequency corrections are applied. If using an external reference
or you are using the TG time base frequency as the frequency standard in your system, you will want to
specify SA_REF_INTERNAL_OUT or SA_REF_EXTERNAL_IN so the additional corrections are not applied.

Return Values

saTrackingGeneratorNotFound

 A tracking generator is not attached to the device specified.

saNotConfiguredErr The tracking generator is actively sweeping and cannot be configured.

saInvalidParameterErr The reference parameter is not one of the acceptable input values, or
the reference parameter is not supported on the attached tracking
generator.

Signal Hound | API Functions 37

saGetTgFreqAmpl
Retrieve the last set TG configuration

saStatus saGetTgFreqAmpl(int device, double *frequency, double *amplitude);

Parameters

device Device handle.

frequency The double variable that frequency points to will contain the last set
frequency of the TG output in Hz.

amplitude The double variable that amplitude points to will contain the last set
amplitude of the TG output in dBm.

Description

Retrieve the last set TG output parameters the user set through the saSetTg function. The setTg function
must have been called for this function to return valid values. If the TG was used to perform scalar
network analysis at any point, this function will not return valid values until the setTg function is called
again.

If a previously set parameter was clamped in the setTg function, this function will return the final
clamped value.

If any pointer parameter is null, that value is ignored and not returned.

Return Values

saNoError The function returned successfully.

saTrackingGeneratorNotFound No tracking generator has been attached to the SA device.

saNotConfiguredErr The API is currently configured and initiated for tracking generator
sweeps and the tracking generator cannot be controlled at this time.

saConfigIFOutput
Configure the SA124A/B IF output port

saStatus saConfigIFOutput(int device, double inputFreq, double outputFreq, int
inputAtten, int outputGain);

Parameters

device Device handle.

inputFreq The input center frequency on the SMA connector specified in Hz. Must
be between 125MHz and 13GHz.

38 API Functions | Signal Hound

outputFreq The desired output frequency on the BNC port specified in Hz. Positive
for low-side LO injection, negative for high-side. Must be between 34
and 38MHz for the SA124A and between 61 and 65MHz for the SA124B.

inputAtten Attenuation of the input signal specified in dB. Must be between 0 and
30 dB.

outputGain Amplification of the output signal specified in dB. Must be between 0
and 60 dB.

Description

The SA124A/B allows a user to configure the device to route the 6 MHz bandwidth intermediate
frequency directly to the IF output BNC port. While the IF is routed to the BNC port, the device is
incapable of performing sweeps or IQ streaming. There is no image rejection in this mode.

Calling this function while the device is currently active in a different mode will cause the API to abort
the current mode of operation and enable the IF output BNC port. To disable the IF output, simply call
saInitiate() with the new desired configuration.

The local oscillator mixed with the RF must be 138 MHz or higher, so only high side injection is available
below 201 MHz.

Return Values

saNoError The function returned successfully.

saDeviceNotOpenErr The device specified is not open.

saInvalidDeviceErr The device specified does not have the IF output functionality. Only the
SA124A and SA124B have IF output capabilities.

saParameterClamped One or more input parameters fell outside the range of accepted values.
The offending parameters were clamped to the acceptable range.

saGetAPIVersion
Get an API software version string

const char* saGetAPIVersion();

Return Values

const char* The returned string is of the form

 major.minor.revision

 Ascii periods (“.”) separate positive integers. Major/Minor/Revision are
not gauranteed to be a single decimal digit. The string is null
terminated. An example string is below ..

 [‘1’ | ‘.’ | ‘2’ | ‘.’ | ‘1’ | ‘1’ | ‘\0’] = “1.2.11”

Signal Hound | Error Handling 39

saGetErrorString
Retrieve an error string given an API status code

const char* saGetErrorString(saStatus code);

Parameters

code A saStatus value returned from an API call.

Description

Produce an ASCII string representation of a given status code. Useful for debugging.

Return Values

const char* A pointer to a non-modifiable null terminated string. The memory
should not be freed/deallocated.

Error Handling
All API functions return the type saStatus. saStatus is an enumerated type representing the success of a
given function call. The return values can be found in sa_api.h. There are three types of returned status
codes.

1) No error: Represented with value saNoError, equal to zero.
2) Error: interrupts function execution, represented by a negative return value.
3) Warning: does not interrupt function execution, but may leave the system in an undesirable

state. Represented as a positive value.

The best way to address issues is to check the return values of the API functions. The API function
saGetErrorString is provided to retrieve a string representation of any given status code for easy
debugging.

Device Connection Errors
The API issues errors when fatal connection issues are present during normal operation of the device.
Only one major error is returned due to fatal connections issues, saUSBCommErr. This error can be
returned from all major Get() routines. If at any time the API experiences USB communication errors the
next Get() routine will return this error.

If you receive this error, your program should call saCloseDevice() to free any remaining resources
before checking the connection of your device and trying to open the device through the API again.

Appendix

Setting RBW and VBW
The SA44 and SA124 models have many device restrictions which prevent the user from selecting all
possible combinations of RBW and VBW for any given sweep. Many restrictions are not known until
saInitiate() is called and all parameters of the sweep are considered. The API clamps RBW/VBW

40 Appendix | Signal Hound

when saInitiate() is called if they break the restrictions which are listed below. Concern yourself with
these restrictions only when it is imperative the API use exactly the RBW and VBW you requested.

SA44A/B, SA124A/B limitations:

- Available RBWs in the standard sweep mode
o 0.1Hz to 100kHz, and 250kHz.

- Available RBWs in real-time
o 100Hz to 10kHz

- For the SA44A, RBW/VBW must be greater than or equal to 6.5kHz when
o span is greater than 200kHz

- For the SA44B, SA124A, SA124B, RBW/VBW must be greater than or equal to 6.5kHz when
o span is greater than or equal to 100MHz
o span is greater than 200kHz AND start frequency < 16MHz

- For SA124A/B 6MHz RBW available when
o Start frequency >= 200MHz AND Span >= 200MHz

Setting Gain and Attenuation
When automatic atten or automatic gain are selected, the API uses the reference level provided to
choose the best settings for gain, attenuator, and preamplifier (if applicable) settings for an input signal
with amplitude equal to reference level. For almost all cases, automatic settings are best. However, if
your application must override the automatic settings, set all gain control values (atten, gain, and
preamp) to manual values.

The atten parameter controls the RF input attenuator, and is adjustable from 0 to 30 dB in 10 dB steps
for the SA124A and SA124B, or 0 to 15 dB in 5 dB steps for the SA44 / SA44B. The RF attenuator is the
first gain control device in the front end, before the preamplifier (if any).

The preamp parameter, only for the USB-SA44B, controls whether the preamplifier is in circuit or
bypassed. The preamplifier increases sensitivity, decreases local oscillator feed-through, and
significantly increases the amplitude of intermodulation products. It is located immediately after the
attenuator. For the SA124A/B the preamplifier is always on; use a higher attenuation setting for high
amplitude signals.

The gain parameter controls analog and digital intermediate frequency (IF) gain. A setting of 1 is mid-
range. Setting gain to 0 adds a 16 dB attenuator to the IF input. Setting gain to 2 adds 12 dB of digital
gain to the IF signal processing chain before the 24 bit ADC values are truncated to 16 bits.

Code Examples
The code examples have been moved to the examples/ folder found in the API download.

Programming Languages Other Than C++ (and bools)
Even though the API is compiled with Microsofts C++ compiler (VC++), name decoration is explicitly
disabled for public functions so that a variety of programming languages and external tools can utilize
this API. Programming languages such as C#, Java, and Python can call this API as well as tools such as
Matlab and LabView.

Signal Hound | Appendix 41

Most function parameters are standard primitive data types, such as floating point numbers and
integers. Parameters are passed either by value or as a pointer. Supplying these parameters is supported
by the languages and tools mentioned above.

One such primitive type without a direct analogous type is the bool type. VC++ defines the bool type as
an 8-bit integer. Passing 0 for false and 1 for true in an 8-bit integer type will work when a bool type is
needed by the API.

Enums are defined as 32-bit integers in VC++.

Internal Auto-Calibration
Every time saInitiate is called, the API reads the internal temperature of the device and generates
corrections accordingly. If you open the device shortly after plugging it in, before it has had 15 minutes
to reach ambient temperature, your readings may drift as it warms up. It is recommended to re-initiate
your sweep every 2-3 minutes until a stable internal temperature is reached.

ARMv7-A Support
This API has been compiled for the Raspberry Pi 2, using Raspbian kernel version 3.18, release date
2015-05-05, compiled with gcc version 4.6.3. The purpose of this API is to provide a low power, robust
platform for remote or battery-powered spectrum monitoring applications.

This branch of the API has several major differences from the Windows API:

1. Only a single connected device is supported. This device must be a USB-SA44B or USB-SA124B.
2. A factory firmware update is required. You must contact Signal Hound for an RMA to use this

API if you have firmware version 2.10 for the USB-SA44B, or firmware version 3.10 or 3.11 for
the USB-SA124B.

3. The USB-SA44, USB-SA124A, and USB-SA44B with serial numbers below 21000000 (firmware
versions 2.0x) are not supported.

4. There is no tracking generator support.
5. There is limited video bandwidth support. Video bandwidth will be internally clamped to

RBW/2, and is limited to a minimum of 3 kHz when span > 200 kHz.
6. Resolution bandwidths below 3 kHz are available only for spans ≤200 kHz, and may occasionally

drop data, triggering an automatic re-sweep. It is recommended to not use RBW below 3 kHz
unless it is required for your application.

7. IQ streaming
a. Only decimation of 1, 2, and 4 are supported.
b. Decimation of 2 and 4 tested stable and reliable on the Raspberry Pi 2. Decimation of 1

may not provide continuous data, and should be avoided if possible.
c. IF bandwidth is fixed at 250 kHz / decimation.

8. Real-time mode is not supported.

Directions for installation can be found in the README file included in the ARM SDK.

This API should work on other ARM processors as long as they have USB 2.0 and “hard floats”. Results
may vary.

42 Appendix | Signal Hound

	Overview
	Contact Information

	Build/Version Notes
	Version 3.0.0

	Requirements
	Setup and Initialization
	Theory of Operation
	Opening a Device
	First Time Opening a New Device

	Configuring the Device
	Initiating the Device
	Retrieve Data from the Device
	Abort the Current Mode
	Closing the Device

	Modes of Operation
	Swept Analysis
	Real-Time Analysis
	IQ Streaming
	Audio Demodulation
	Scalar Network Analysis

	API Functions
	saGetSerialNumberList
	saOpenDevice
	saOpenDeviceBySerialNumber
	saCloseDevice
	saPreset
	saSetCalFilePath
	saGetSerialNumber
	saGetFirmwareString
	saGetDeviceType
	saConfigAcquisition
	saConfigCenterSpan
	saConfigLevel
	saConfigGainAtten
	saConfigSweepCoupling
	saConfigRBWShape
	saConfigProcUnits
	saConfigIQ
	saConfigAudio
	saConfigRealTime
	saConfigRealTimeOverlap
	saSetTimebase
	saInitiate
	saAbort
	saQuerySweepInfo
	saQueryStreamInfo
	saQueryRealTimeFrameInfo
	saQueryRealTimePoi
	saGetSweep
	saGetPartialSweep
	saGetRealTimeFrame
	saGetIQ
	saGetIQData
	saGetIQDataUnpacked
	saGetAudio
	saQueryTemperature
	saQueryDiagnostics
	saAttachTg
	saIsTgAttached
	saConfigTgSweep
	saStoreTgThru
	saSetTg
	saSetTgReference
	saGetTgFreqAmpl
	saConfigIFOutput
	saGetAPIVersion
	saGetErrorString

	Error Handling
	Device Connection Errors

	Appendix
	Setting RBW and VBW
	Setting Gain and Attenuation
	Code Examples
	Programming Languages Other Than C++ (and bools)
	Internal Auto-Calibration
	ARMv7-A Support

