
TEST EQUIPMENT PLUS

Signal Hound Broadband
Spectrum Analyzer

Application Programming
Interface(API)

Programmers Reference Manual
Version 1.2

Justin Crooks & Andrew Montgomery

10/31/2013

Requirements, Operation, Function Definitions, Examples

This information is being released into the public domain in accordance with the Export Administration
Regulations 15 CFR 734

Test Equipment Plus | 1

Table of Contents

Overview ...2

Legend .. 3
Contact Information ... 3

Build/Version Notes ...3

Requirements ..3

Theory of Operation ...4

Opening a Device ... 4
Configuring the Device ... 4
Initiate the Device .. 4
Retrieve Data from the Device ... 5
Abort the Current Mode .. 5
Close Device ... 5
Calibration .. 5

Modes of Operation ...6

Swept Analysis ... 6
Real-Time Analysis ... 7
Time-Gate Analysis .. 7
Zero-Span ... 8
Raw Data .. 9

Gain and Attenuation in the Streaming Mode ... 9
Raw Sweep ... 10
Raw Sweep Loop .. 11
Audio Demodulation .. 11

Sweeping versus Streaming .. 11

API Functions ... 12

bbOpenDevice.. 12
bbCloseDevice .. 12
bbConfigureAcquisition ... 13
bbConfigureCenterSpan ... 14
bbConfigureLevel ... 14
bbConfigureGain .. 15
bbConfigureSweepCoupling .. 16
bbConfigureWindow .. 17
bbConfigureProcUnits .. 18
bbConfigureTrigger .. 19
bbConfigureTimeGate .. 19
bbConfigureRawSweep .. 20
bbConfigureIO .. 21
bbConfigureDemod .. 22
bbInitiate .. 23
bbFetchTrace ... 24
bbFetchAudio ... 26
bbFetchRawCorrections ... 26
bbFetchRaw ... 27
bbFetchRawSweep ... 29

2 Overview | Test Equipment Plus

bbStartRawSweepLoop .. 30
bbQueryTraceInfo .. 31
bbQueryStreamingCenter .. 31
bbQueryTimestamp ... 32
bbQueryDiagnostics ... 33
bbAbort .. 33
bbPreset ... 34
bbSelfCal .. 35
bbSyncCPUtoGPS ... 35
bbGetDeviceType ... 36
bbGetSerialNumber ... 37
bbGetFirmwareVersion .. 37
bbGetAPIVersion .. 37
bbGetErrorString .. 38

Error Handling ... 38

Device Connection Errors .. 38

Appendix ... 39

Code Examples ... 39
Common ... 39
Sweep Mode .. 39
Raw Data Pipe Example .. 41
Zero-Span Triggering .. 42
Raw Sweep Example .. 43

Using a GPS Receiver to Time-Stamp Data .. 44
Code Example ... 44

Bandwidth Tables... 46

Overview
This manual is a programmer’s reference for the Signal Hound Broadband API. The API is a C-based set
of routines used to control the Signal Hound broadband devices.

This manual will describe the requirements and skills needed to program to the API. If you are new to
the API you should read the sections in order: Build/Version Notes, Requirements, Theory of Operation,
and Modes of Operation.

The Build/Version Notes details each library build by Operating System.
The Requirements section details the physical and operational needs to use the API.
The Theory of Operation section details how to interface this device and covers every major component
a program will implement when interfacing a Signal Hound broadband device.
The Modes of Operation section attempts to teach you how to use the device in each of its operation
modes, from the required functions, to understanding the data the device returns.
The API Functions section details every function in depth. The knowledge learned in the Theory and
Modes of operation sections will help you navigate the API functions.
The Appendix provides various code examples and tips.

Test Equipment Plus | 3

Legend
broadband device A signal hound bb-series spectrum analyzer.

device Shortened for broadband device, for brevity.

Contact Information
We are interested in your feedback and questions. Please report any issues/bugs as soon as possible.
We will maintain the most up to date API on our website. We encourage any and all criticisms or ideas.
We would love to hear how you might improve the API.

All programming and API related questions should be directed to aj@teplus.com
All hardware/specification related questions should be directed to justin@teplus.com

You can also contact us via phone, 1-800-260-8378. Listen for the extensions for AJ or Justin.

Build/Version Notes
Two Windows builds are available for 32 and 64 bit operating systems. The builds are compiled with
Visual Studio 2012. Distributing an application using this library will require installing the VS2012
redistributable libraries.

A 64-bit Linux library is now available. The library is built on Ubuntu 12.04 using g++ version 4.6.3. The
libusb libraries are required, they can be downloaded from the libusb website or installed via your
package manager. libusb version 1.0 or greater is required.

Requirements

Windows Development Requirements
Below is a list of requirements needed to begin.

1) Windows 7. The API is untested outside Windows 7 although has shown to be stable on
Windows 8.

2) Windows C/C++ development tools/environment. Preferably Visual Studio 2008 or later.
3) The bb_api.h API header file.
4) The API library(.lib) and dynamic library(.dll) files.

Linux Development Requirements

1) libusb 1.0 or greater
2) The bb_api header and shared object file
3) Knowledge of linking shared libraries

General Requirements

1) A basic understanding of RF Spectrum Analysis.
2) A Signal Hound broadband spectrum analyzer.
3) Dual / Quad core Intel i-series processors, preferrably 2nd generation(Sandy Bridge) and later.

Real-time analysis may be inadequate on hardware less performant than this. Most aspects
other than real-time analysis will perform as expected with no issues on modest hardware.

mailto:aj@teplus.com
mailto:justin@teplus.com

4 Theory of Operation | Test Equipment Plus

Theory of Operation
The flow of any program interfacing a broadband device will be as follows.

1) Open a USB 3.0 connected device.
2) Configure the device
3) Initiate a device mode of operation
4) Retrieve data from the device
5) Abort the current mode of operation
6) Close the device
- Calibration

The API provides functions for each step in this process. We have strived to mimic the functionality and
naming conventions of SCPI’s IviSpecAn Class Specification where possible. It is not necessary to be
familiar with this specification but those who are should feel comfortable with our API immediately.
Let’s look at each step in detail of a typical program interfacing a Signal Hound spectrum analyzer.

Opening a Device
Before attempting to open a device programmatically, it must be physically connected to a USB 3.0 port
with the provided cable. Ensure the power light is lit on the device and is solid. Once the device is
connected it can be opened. The function bbOpenDevice() provides this functionality. This function
returns an integer ID to the device which was opened. Up to eight devices may be connected and
interfaced through our API using the ID’s. The integer ID returned is required for every function call in
the API, as it uniquely identifies which broadband device you are interfacing.

Configuring the Device
Once the device is opened, it must be configured. The device has a number of configuration routines
and many operating states. Most of this manual discusses configuring the device. In the ‘Modes of
Operation’ section, each operating mode and its relevant configuration routines are discussed. All
configure functions will modify the devices’ global state. Device state is discussed more in the next
section (Initiating the device). The API provides configure routines for groupings of related variables.
Each function is described in depth in the API functions section. All relevant configuration routines
should be invoked. Also note there are boundary conditions when configuring the device. Some
variables will have different boundary conditions given the mode you will later be trying to operate in.
Each function description will detail these boundaries. We have also provided helpful #defines in the API
header file to help check against these boundaries. All configure routines will provide error/warning
messages when these boundaries are crossed.

Initiate the Device
Each device has two states.

1) A global state set through the API configure routines
2) An operational/running state.

All API configure functions modify the global state which does not immediately affect the operation of
the device. Once you have configured the global state to your liking, you may initiate the device into a
mode of operation, in which the global state is copied into the running state. At this point, the running
state is separate and not affected by future configuration function calls.

Test Equipment Plus | 5

The broadband spectrum analyzers have multiple modes of operation. The bbInitiate() function is used
to enter one of the operational states. The device can only be in one operational state at a time. If
bbInitiate() is called on a device that is already running, the current state is aborted before entering the
new specified state. These modes are described in the “Modes of Operation” section.

Retrieve Data from the Device
Once a device has been successfully initiated you can begin retrieving data from the device. Every mode
of operation returns different types and amounts of data. Some modes return a constant amount of
data and some return varying sizes of data. The Modes of Operation section will help you determine
how to collect data from the API. While this is the general flow of information for each operating mode,
beware that each mode has its own nuances. Specific operational modes are detailed more in the
Modes of Operation section.

Abort the Current Mode
Aborting the operation of the device is achieved through the bbAbort() function. This causes the device
to cancel any pending operations and return to an idle state. Calling abort explicitly is never required. If
you attempt to initiate an already active device, bbAbort() will be called for you. Also if you attempt to
close an active device, bbAbort() will be called. There are a few reasons you may wish to call bbAbort()
manually though.

- Certain modes alongside certain settings consume large amounts of resources such as memory
and the spawning of many threads. Calling bbAbort will free those resources.

- Certain modes such as Real-Time Spectrum Analysis consume many CPU cycles, and they are
always running in the background whether or not you are collecting and using the results they
produce.

- Aborting an operational mode and spending more time in an idle state may reduce power
consumption.

Close Device
When you are finished, you must call bbCloseDevice(). This function attempts to safely close the USB 3.0
connection to the device and clean up any resources which may be allocated. A device may also be
closed and opened multiple times during the execution of a program. This may be necessary if you want
to change USB ports, or swap a device.

Calibration
Calibration is an important part of the device’s operation. The devices are temperature sensitive and it is
important a device is always re-calibrated when significant temperature shifts occur (+/- 2 °C). Signal
Hound spectrum analyzers are streaming devices and as such cannot automatically calibrate itself
without interrupting operation/communication (which may be undesirable). Therefore we leave
calibration to the programmer. The API provides two functions for assisting with live calibration,
bbQueryDiagnostics and bbSelfCal. bbQueryDiagnostics can be used to retrieve the internal device
temperature at any time after the device has been opened. If the device ever deviates from its
temperature we suggest calling bbSelfCal. Calling bbSelfCal requires the device be open and idle. After a

6 Modes of Operation | Test Equipment Plus

self-calibration occurs, the global device state is undefined. It is necessary to reconfigure the device
before continuing operation. One self-calibration is performed upon opening the device.

Modes of Operation
Now that we have seen how a typical application interfaces with the device, let’s examine the different
modes of operation a Signal Hound spectrum analyzer provides. Each mode will accept different
configurations and have different boundary conditions. Each mode will also provide data formatted to
match the mode selected. In the next sections you will see how to interact with each mode.

For a more in-depth examination of each mode of operation (read: theory) refer to the Signal Hound
broadband spectrum analyzer user manual.

Swept Analysis
Swept analysis represents the most traditional form of spectrum analysis. This mode offers the largest
amount of configuration options, and returns frequency domain sweeps. A frequency domain sweep
displays amplitude on the vertical axis and frequency on the horizontal axis.

The configuration routines which affect the sweep results are

- bbConfigureAcquisition
- bbConfigureCenterSpan
- bbConfigureLevel
- bbConfigureGain
- bbConfigureSweepCoupling
- bbConfigureWindow
- bbConfigureProcUnits

Once you have configured the device, you will initiate it using the BB_SWEEPING mode.

This mode is driven by the programmer, causing a sweep to be collected only when the program
requests one through th bbFetchTrace function. The length of the spectra and number of spectra used
to compose the sweep are determined by a combination of resolution bandwidth, video bandwidth and
sweep time.

Once the device is initiated you can determine the characteristics of the data you will be collecting with
bbQueryTraceInfo. This function returns the length of the sweep, the frequency of the first sample and
the bin size (difference in frequency between any two samples). You will need to allocate two arrays of
memory, representing the Min and Max for each frequency point.

Now you are ready to call bbFetchTrace. This is a blocking call that does not begin collecting and
processing data until it is called. Typical sweep times might range from 10 – 100 ms, but certain settings
can take much more time (full spans, low RBW/VBWs).

Determining the frequency of any point returned is determined by the function where ‘n’ is a zero based
sample point.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑛′𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑠𝑤𝑒𝑒𝑝 = 𝑠𝑡𝑎𝑟𝑡𝐹𝑟𝑒𝑞 + 𝑛 ∗ 𝑏𝑖𝑛𝑆𝑖𝑧𝑒

Test Equipment Plus | 7

Real-Time Analysis
The API provides the functionality of an online real-time spectrum analyzer for a 20MHz bandwidth.
Through the use of FFTs at an overlapping rate of 75%, the spectrum results have no blind time (100%
probability of intercept). Due to the demands in processing, restrictions are placed on resolution
bandwidth, and video bandwidth is non-configurable.

The configuration routines which affect the spectrum results are

- bbConfigureAcquisition
- bbConfigureCenterSpan

o Span must be less than or equal to 20MHz. Span restrictions are defined in the API
header as BB_MIN/MAX_RT_RBW.

- bbConfigureLevel
- bbConfigureGain
- bbConfigureSweepCoupling

o Restricted bandwidths, defined in the API header file as BB_MIN/MAX_RT_RBW.
o Resolution bandwidths are restricted to the native values using the NUTALL window.
o Video bandwidth is unconfigurable.

The number of spectrum results far exceeds a program’s capability to acquire, view, and process,
therefore the API combines results by min/max/averaging the spectrum density at each frequency bin
for a specified amount of time. That time is determined by the sweepTime parameter in
bbConfigureSweepCoupling.

Once configured, initiate the device in BB_REAL_TIME mode. The API immediately begins collecting
spectrum. Use bbQueryTraceInfo to determine sweep characteristics and bbFetchTrace to collect
sweeps. bbFetchTrace will block until data is ready. Because data is always being processed, the API uses
a queue to store data until it is requested. It is possible for the queue to fill leading to a loss in data.
Ensure your program can collect sweeps at the rate of sweepTime provided.

Time-Gate Analysis
Time gate analysis allows you to capture a specific time slice of spectrum using external triggers. A gate
represents the time you are interested in. An external trigger drives the capture of a gate of data. Signal
analysis is performed on the gate similar to swept analysis mode. The user must specify the start of the
gate relative to the trigger, and the length of the gate. The minimum gate length is dependent on your
bandwidth settings. Using “native” bandwidths, with RBW = VBW, this is roughly 2.0 / RBW.
bbConfigureTimeGate is used to characterize the gate.

Configuration is very similar to standard sweep mode with a few limitations. The maximum span allowed
is 20MHz. The gate length must also be large enough to support the necessary processing. This means
that your FFT size cannot be larger than the length of the gate. See Appendix:Bandwidth Table to
determine FFT size. You also must specify a timeout period. This is the length of time the API will look for
a trigger. If no trigger is found the final chunk of spectrum captured is used for analysis and
bbNoTriggerFound warning is returned. It is also possible the trigger is found too late in the total capture
not allowing enough room for the gate. This will also trigger the bbNoTriggerFound warning.

8 Modes of Operation | Test Equipment Plus

Sweeps characteristics are determined and acquired through the bbQueryTraceInfo and bbQueryTrace
routines. bbFetchTrace looks for only one gate per function call.

Notes: Many of the boundary issues such as gates too small for processing, or gates being larger than
the timeout period, are caught during bbInitiate and often a bbInvalidParameter error message is
returned. For now, we leave the programmer to determine and assess gate characteristics. We
encourage loosening specifications to assert proper functionality before “tightening” specs.

Zero-Span
Zero-Span offers highly configurable AM and FM demodulation. Video and external triggers are available
for synchronization as well as adjustable bandwidth and video filters.

Using zero-span, sweeps returned represent amplitude or frequency over time.

Configuration routines which affect sweeps are

- bbConfigureAcquisition
o scale is necessary for amplitude demodulation

- bbConfigureCenterSpan
o center frequency represents the frequency you want to view in the time domain, span is

irrelevant here and is ignored.
- bbConfigureSweepCoupling

o RBW represents the width of the bandpass filter located at the center frequency
o VBW is the bandwidth of the filter performed on the demodulated trace
o Sweep time is the length of the trace

- bbConfigureLevel
o For AM and FM, reference level should be greater than your expected input signal,

reference level helps determine the best gain and attenuation when using auto
atten/gain.

- bbConfigureGain
- bbConfigureTrigger

o Should be called even if you are using no trigger.
 When using no trigger, trigger parameters are ignored.

o Allows you to configure an external or video capture trigger or no trigger.
- bbConfigureIO

o Applicable if utilizing external triggers

The bbConfigureTrigger routine can setup an external or video trigger. If an external trigger is desired
you must also call bbConfigureIO to setup the BNC port for an external trigger.

When using triggers in this mode, you must specify a capture window (timeout paramter on
bbConfigureTrigger). The capture window length specifies a continuous time period to look for a trigger
before returning. If a trigger is found, a sweep is returned from the point of the trigger. If the trigger is
found near the end of a capture window, there may not be enough data remaining in the window for a
full sweep. In this event a trigger is still reported and the starting location is shifted so that a full sweep
can be returned. To prevent this scenario from occuring frequently increase the length of the capture
window.

Test Equipment Plus | 9

Initiate the device with the BB_ZERO_SPAN value. Sweep characteristics are determined with the
bbQueryTraceInfo function. Sweeps are retrieved with the bbFetchTrace function. bbFetchTrace is a
blocking call, and can take up to multiple seconds depending on the settings used in bbConfigureTrigger.

Raw Data
The API is capable of providing programmers with a continuous stream of RF at 20 MHz and 7 MHz
bandwidths. Both are unique in structure and are described below.

The device is capable of continuously streaming 20 MHz of IF bandwidth through the API. The IF stream
is 16-bit signed ADC values, sampled at 80 MSPS. It is possible to retrieve these digital samples as 32-bit
floating point values and 16-bit signed integers. The 20 MHz of usable bandwidth is shown below in the
frequency domain.

Figure 1 : 20MHz bandwidth shown in the spectrum domain.

Above is the typical result of a DFT on real data. fs is the sample rate, 80 million. A 20 MHz bandpass
filter is centered on center. This leaves 20 MHz of usable spectrum centered on center. center is the
frequency returned from bbQueryStreamingCenter() which can be called after an IF stream is opened.

7 MHz streaming was introduced to reduce the necessary hard drive solutions needed to save a 20 MHz
bandwidth. 7 MHz streaming produces data at ~40 MB/s and it becomes viable to save all data with no
high speed disk solution. The data rate is also decreased by four and will decrease
computational/analysis cost later when reviewing the data.

For the 7 MHz IQ data pipe the IF is downconverted to a baseband signal and filtered. The center
frequency must be a multiple of 1kHz. The data returned is alternating IQ values at a rate of 10 million
IQ pairs per second representing a bandwidth of 10 MHz. The 7 MHz of usable bandwidth is centered.

Configuration routines used to prepare streaming are

- bbConfigureCenterSpan()
o A center frequency which is a multiple of 400kHz is best for minimal spurious signals.
o Span is ignored

- bbConfigureLevel()
o See below for discussion on attenuation and reference level

- bbConfigureGain()
o See below for discussion on gain

Gain and Attenuation in the Streaming Mode

Gain and attenuation are used to control the path the RF takes through the device. Selecting the proper
gain and attenuation settings greatly affect the dynamic range of the resulting signal. By default the data

10 Modes of Operation | Test Equipment Plus

returned in the streaming data mode is not amplitude corrected and gain and attenuation need to be
manually chosen. When gain and attenuation are chosen, reference level is ignored.

Automatic gain and attenuation should only be used when you plan on utilizing the amplitude
corrections retrieved from bbFetchRawCorrections. This is because automatic gain and attenuation are
chosen for best dynamic range after corrections are applied and based on your suggested reference
level. To learn more about how to perform amplitude corrections please see bbFetchRawCorrections.

Once configured, initiate the device in BB_RAW_PIPE mode with the proper bandwidth flag.(See
bbInitiate) Data acquisition begins immediately. Use the bbFetchRaw() function to collect 299008
samples. This function is blocking when data is not ready. With a 20 MHz bandwidth, bbFetchRaw must
be called approximately 267 times per second. Using the 7 MHz bandwidth, bbFetchRaw must be called
approximately 67 times per second. The API queues up to 120ms of data in both bandwidths, before the
queue becomes full and drops data. It is very important to have minimal processing in the data
collection thread to prevent this from happening.

PLEASE NOTE: The downconversion from 20 MHz to 7 MHz is processor intensive, as it is performed
entirely in software. Please characterize this processor load before attempting to perform any real-time
analysis.

If you want to convert the values returned from bbFetchRaw() to a more space efficient data type, we
recommend signed shorts, scaling the returned values by 32768.

Raw data mode is also the only mode in which you can time stamp data (See Appendix:Using a GPS
Reciever to Time-Stamp Data) and determine external trigger locations (See bbFetchRaw).

Raw Sweep
Raw sweep mode is similar to regular sweep mode except the API performs no signal processing and just
returns the digital samples. The lack of signal processing makes this mode ideal for applications which
benefit from lightweight data acquisition and applications that require custom data processing.

This mode steps across the spectrum in 20MHz steps returning a specified amount of digital samples at
each center frequency. The user can select the number of steps to take across the spectrum, where to
start the sweep, and the number of digital samples to collect at each step.

The digital samples returned are the direct 14-bit signed shorts returned from the analog to digital
converter. The 14 bits are shifted left two bits into a 16 bit signed short, occupying the upper 14 bits of a
signed short. Amplitude corrections are not made on the data, so absolute amplitude cannot be
determined. The range of values returned will be determined by the user selected gain and attenuation.
It is the responsibility of the user in this mode to choose the gain and attenuation which maximize the
signal range.

You must configure the sweep via the bbConfigureRawSweep functions. There are various limitations on
how one can configure the sweep, see the function description for more detail.

Test Equipment Plus | 11

Once configured, initiate the device in BB_RAW_SWEEP mode. You can begin collecting sweeps with the
bbFetchRawSweep function. Sweeps sizes are determined from parameters used to configure the
sweep. Sweeps are collected on demand, one per fetch.

Raw Sweep Loop
The user is expected to understand the raw sweep mode before using this mode.

Raw sweep loop mode is similar to raw sweep except that instead of returning traces on request, the
device sweeps the spectrum as configured indefinitely. This eliminates the software setup time at the
beginning of each sweep, and can drastically improve sweep speed for sweeps under 50 ms. This mode
is ideal for lightweight wide-band spectral monitoring, and is the only mode which exposes the full
sweep speed of the device for extended periods of time.

The device is configured using the bbConfigureRawSweep function. Gain and attenuation must also be
chosen (cannot be set to auto). The device must be initated using BB_RAW_SWEEP_LOOP as the mode.
After configuration the device does not begin operation until bbStartRawSweepLoop is called. See the
function entry for more information.

Requesting the smallest dwell time at each step, this mode is capable of sweeping ~25 GHz per second.
Despite the name, this mode is in fact streaming data continuously, and incurs the ½ second abort time
as described in the section Sweeping versus Streaming.

Audio Demodulation
Audio demodulation can be achieved using bbConfigureDemod, bbFetchAudio, and bbInitiate. See
bbConfigureDemod() to see which types of demodulation can be performed. Settings such as gain,
attenuation, reference level, and center frequency affect the underlying signal to be demodulated.

bbConfigureDemod is used to specify the type of demodulation and the characteristics of the filters.
Once desired settings are chosen, use bbInitiate to begin streaming data. Once the device is streaming it
is possible to continue to change the audio settings via bbConfigureDemod as long as the updated center
frequency is not +/- 8 MHz of the value specified when bbInitiate was called. The center frequency is
specified in bbConfigureDemod.

Once the device is streaming, use bbFetchAudio to retrieve 4096 audio samples for an audio sample rate
of 32k.

Sweeping versus Streaming
All modes of operation fall within two categories, sweeping and streaming. In any sweeping mode, the
device operates only when requested. For example, requesting a trace triggers a single trace acquisition,
otherwise the device and API are idle. Sweeping is very responsive and switching between different
types of sweep modes is very quick. Streaming modes are modes in which the API is continually
receiving a stream of spectrum (20MHz) from the device. The characterization of the data is a result of
the initial configuration. The device is never idle in these modes. Once this process is started, it takes
about ½ second to abort any streaming operation, to ensure all channels/pipes have been cleared and
the device is ready for its next command.

12 API Functions | Test Equipment Plus

Note: Entering a stream mode is nearly instantaneous if the device is coming from an idle or sweep
mode.

Depending on your application this ½ second abort time may not be acceptable (switching bands
quickly/changing settings quickly). If you are interested in utilizing a streaming mode to fully
characterize a signal of interest, a good approach might be to start in the standard sweep mode or the
raw sweep mode. From these modes you can simply detect the location of a signal of interest and
quickly react by switching into a stream mode with appropriate settings.

API Functions

bbOpenDevice
Open one Signal Hound broadband device

bbStatus bbOpenDevice(int *device);

Parameters

device If successful, a device number is returned. This number is used for all
successive API function calls.

Description

This function attempts to find the first unopened broadband device and initalize it for use.

This function when successful, takes about 3 seconds to perform. The API maintains a list of opened
devices by serial number. Therefore, calling bbOpenDevice() a second time will do nothing, assuming
only one device is connected. The only way to remove a serial number from the open device list is to call
bbCloseDevice() with the proper device ID or end the program execution.

This function must be called before any other calls are made to the device. Attempting to interface a
device that is not open will return bbDeviceNotOpenErr errors. This function at most opens a single
device. The device parameter returned will always be a value between 0-7. This value must be saved as
it is used to for all subsequent API calls.

Return Values

bbNoError No error, device number opeened and returned successfully.

bbNullPtrErr The parameter device is null. The device is not opened.

bbDeviceNotOpenErr The device was unable to open. This can be returned for many reasons
such as the device is not physically connected, eight devices are already
open or there is an issue with the USB 3.0 connection.

bbCloseDevice
Close one Signal Hound broadband device

bbStatus bbCloseDevice(int device);

Test Equipment Plus | 13

Parameters

device Handle to the device being closed.

Description

This function is called when you wish to terminate a connection with a device. Any resources the device
has allocated will be freed and the USB 3.0 connection to the device is terminated. The device closed
will be released and will become available to be opened again.

Return Values

bbNoError The device closed successfully.

bbDeviceNotOpenErr The device specified is not open.

bbConfigureAcquisition
Change the detector type and choose between linear or log scaled returned sweeps

bbStatus bbConfigureAcquisition(int device, unsigned int detectorType, unsigned int
verticalScale);

Parameters
device Handle to the device being configured.

detectorType Specifies the video detector. The two possible values for detector type
are BB_AVERAGE and BB_MIN_AND_MAX.

verticalScale Specifies the scale in which sweep results are returned int. The four
possible values for verticalScale are BB_LOG_SCALE, BB_LIN_SCALE,
BB_LOG_FULL_SCALE, and BB_LIN_FULL_SCALE.

Description

The verticalScale parameter will change the units of returned sweeps. If BB_LOG_SCALE is provided
sweeps will be returned in amplitude unit dBm. If BB_LIN_SCALE is return, the returned units will be in
millivolts. If the full scale units are specified, no corrections are applied to the data and amplitudes are
taken directly from the full scale input.

detectorType specifies how to produce the results of the signal processing for the final sweep.
Depending on settings, potentially many overlapping FFTs will be performed on the input time domain
data to retrieve a more consistent and accurate final result. When the results overlap detectorType
chooses whether to average the results together, or maintain the minimum and maximum values. If
averaging is chosen the min and max trace arrays returned from bbFetchTrace will contain the same
averaged data.

Return Values

bbNoError No error.

bbDeviceNotOpenErr The device handle provided points to a device that is not open.

bbInvalidDetectorErr The detector type provided does not match the list of accepted values.

bbInvalidScaleErr The scale provided does not match the list of accepted values.

14 API Functions | Test Equipment Plus

bbConfigureCenterSpan
Change the center and span frequencies

bbStatus bbConfigureCenterSpan(int device, double center, double span);

Parameters

device Handle to the device being configured.

center Center frequency in hertz.

span Span in hertz.

Description

This function configures the operating frequency band of the broadband device. Start and stop
frequencies can be determined from the center and span.

- start = center – (span/2)
- stop = center+(span/2)

The values provided are used by the device during initialization and a more precise start frequency is
returned after initiation. Refer to the bbQueryTraceInfo function for more information.

Each device has a specified operational frequency range. These limits are BB#_MIN_FREQ and
BB#_MAX_FREQ. The center and span provided cannot specify a sweep outside of this range.

There is also an absolute minimum operating span.

Certain modes of operation have specific frequency range limits. Those mode dependent limits are
tested against during initialization and not here.

Return Values

bbNoError Device successfully configured.

bbDeviceNotOpenErr The device handle provided points to a device that is not open.

bbInvalidSpanErr The span provided is less than the minimum acceptable span.

bbFrequencyRangeErr The calculated start or stop frequencies fall outside of the operational
frequency range of the specified device.

bbConfigureLevel
Change the attenuation and reference level of the device

bbStatus bbConfigureCenterSpan(int device, double ref, double atten);

Parameters

device Handle to the device being configured.

ref Reference level in dBm.

atten Attenuation setting in dB. If attenuation provided is negative,
attenuation is selected automatically.

Test Equipment Plus | 15

Description

When automatic gain is selected, the API uses the reference level provided to choose the best gain
settings for an input signal with amplitude equal to reference level. If a gain other than BB_AUTO_GAIN
is specified using bbConfigureGain, the reference level parameter is ignored.

The atten parameter controls the RF input attenuator, and is adjustable from 0 to 30 dB in 10 dB steps.
The RF attenuator is the first gain control device in the front end.

When attenuation is automatic, the attenuation and gain for each band is selected independently. When
attenuation is not automatic, a flat attenuation is set across the entire spectrum. A set attenuation may
produce a non-flat noise floor.

Return Values

bbNoError Device successfully configured.

bbDeviceNotOpenErr The device handle provided points to a device that is not open.

bbReferenceLevelErr The reference level provided exceeds 20 dBm.

bbAttenuationErr The attenuation value provided exceeds 30 db.

bbConfigureGain
Change the RF/IF gain path in the device

bbStatus bbConfigureGain(int device, int gain);

Parameters

device Handle to the device being configured.

gain A gain setting.

Description

To return the device to automatically choose the best gain setting, call this function with a gain of
BB_AUTO_GAIN.

The gain choices for each device range from 0 to BB#_MAX_GAIN.

When BB_AUTO_GAIN is selected, the API uses the reference level provided in bbConfigureLevel to
choose the best gain setting for an input signal with amplitude equal to the reference level provided.

After the RF input attenuator (0-30 dB), the RF path contains an additional amplifier stage after band
filtering, which is selected for medium or high gain and bypassed for low or no gain.

Additionally, the IF has an amplifier which is bypassed only for a gain of zero.

For the highest gain settings, additional amplification in the ADC stage is used.

Return Values

bbNoError Device successfully configured.

16 API Functions | Test Equipment Plus

bbDeviceNotOpenErr The device handle provided does not point to an open device.

bbInvalidGainErr This is returned if the gain value is outside the range of possible inputs.

bbConfigureSweepCoupling
Change the sweep coupling values

bbStatus bbConfigureSweepCoupling(int device, double rbw, double vbw, double
sweepTime, unsigned int rbwType, unsigned int rejection);

Parameters

device Handle to the device being configured.

rbw Resolution bandwidth in Hz. Use the bandwidth table in the appendix to
determine good values to choose. As of 1.07 in non-native mode, RBW
can be arbitrary. Therefore you may choose values not in the table and
they will not clamp.

vbw Video bandwidth (VBW) in Hz. VBW must be less than or equal to RBW.
VBW can be arbitrary. For best performance use RBW as the VBW.

sweepTime Sweep time in seconds.

 In sweep mode, this value is how long the device collects data before it
begins processing. Maximum values to be provided should be around
100ms.

 In the real-time configuration, this value represents the length of time
data is collected and compounded before returning a sweep. Values for
real-time should be between 16ms-100ms for optimal viewing and use.

 In zero span mode this is the length of the returned sweep as a measure
of time. Sweep times for zero span must range between 10us and
100ms. Values outside this range are clamped.

rbwType The possible values for rbwType are BB_NATIVE_RBW and
BB_NON_NATIVE_RBW. This choice determines which bandwidth table
is used and how the data is processed. BB_NATIVE_RBW is default and
unchangeable for real-time operation.

rejection The possible values for rejection are BB_NO_SPUR_REJECT,
BB_SPUR_REJECT, and BB_BYPASS_RF.

Description

The resolution bandwidth, or RBW, represents the bandwidth of spectral energy represented in each
frequency bin. For example, with an RBW of 10 kHz, the amplitude value for each bin would represent
the total energy from 5 kHz below to 5 kHz above the bin’s center. For standard bandwidths, the API
uses the 3 dB points to define the RBW.

The video bandwidth, or VBW, is applied after the signal has been converted to frequency domain as
power, voltage, or log units. It is implemented as a simple rectangular window, averaging the amplitude
readings for each frequency bin over several overlapping FFTs. A signal whose amplitude is modulated at

Test Equipment Plus | 17

a much higher frequency than the VBW will be shown as an average, whereas amplitude modulation at
a lower frequency will be shown as a minimum and maximum value.

Native RBWs represent the bandwidths from a single power-of-2 FFT using our sample rate of 80 MSPS
and a high dynamic range window function. Each RBW is half of the previous. Using native RBWs can
give you the lowest possible bandwidth for any given sweep time, and minimizes processing power.
However, scalloping losses of up to 0.8 dB, occurring when a signal falls in between two bins, can cause
problems for some types of measurements.

Non-native RBWs use the traditional 1-3-10 sequence. As of version 1.0.7, non-native bandwidths are
not restricted to the 1-3-10 sequence but can be arbitrary. Programmatically, non-native RBW’s are
achieved by creating variable sized bandwidth flattop windows.

sweepTime applies to regular sweep mode and real-time mode. If in sweep mode, sweepTime is the
amount of time the device will spend collecting data before processing. Increasing this value is useful for
capturing signals of interest or viewing a more consistent view of the spectrum. Increasing sweepTime
has a very large impact on the amount of resources used by the API due to the increase of data needing
to be stored and the amount of signal processing performed. For this reason, increasing sweepTime also
decreases the rate at which you can acquire sweeps.

In real-time, sweepTime refers to how long data is accumulated before returning a sweep. Ensure you
are capable of retrieving as many sweeps that will be produced by changing this value. For instance,
changing sweepTime to 32ms in real-time mode will return approximately 31 sweeps per second
(1000/32).

Rejection can be used to optimize certain aspects of the signal. Default is BB_NO_SPUR_REJECT, and
should be used in most cases. If you have a steady CW or slowly changing signal, and need to minimize
image and spurious responses from the device, use BB_SPUR_REJECT. If you have a signal between 300
MHz and 3 GHz, need the lowest possible phase noise, and do not need any image rejection,
BB_BYPASS_RF can be used to rewire the front end for lowest phase noise.

Return Values

bbNoError Device successfully configured.

bbDeviceNotOpenErr The device handle provided points to a device that is not open.

bbBandwidthErr rbw fall outside device limits.

 vbw is greater than resolution bandwidth.

bbInvalidBandwidthTypeErr rbwType is not one of the accepted values.

bbInvalidParameterErr rejection is not one of the accepted values.

bbConfigureWindow
Change the windowing function

bbStatus bbConfigureWindow(int device, unsigned int window);

Parameters

18 API Functions | Test Equipment Plus

device Handle to the device being configured.

window The possible values for window are BB_NUTALL, BB_BLACKMAN,
BB_HAMMING, and BB_FLAT_TOP.

Description

This changes the windowing function applied to the data before signal processing is performed. In real-
time configuration the window parameter is permanently set to BB_NUTALL. The windows are only
changeable when using the BB_NATIVE_RBW type in bbConfigureSweepCoupling. When using
BB_NON_NATIVE_RBWs, a custom flattop window will be used.

Return Values

bbNoError Device successfully configured

bbDeviceNotOpen The device handle provided points to a device that is not open.

bbInvalidWindowErr The value for window did not match any known value

bbConfigureProcUnits
Configure video processing unit type

bbStatus bbConfigureProcUnits(int device, unsigned int units);

Parameters

device Handle to the device being configured.

units The possible values are BB_LOG, BB_VOLTAGE, BB_POWER, and
BB_BYPASS.

Description

The units provided determines what unit type video processing occurs in. The chart below shows which
unit types are used for each units selection.

For “average power” measurements, BB_POWER should be selected. For cleaning up an amplitude
modulated signal, BB_VOLTAGE would be a good choice. To emulate a traditional spectrum analyzer,
select BB_LOG. To minimize processing power, select BB_BYPASS.

BB_LOG dBm

BB_VOLTAGE mV

BB_POWER mW

BB_BYPASS No video processing

Return Values

bbNoError Device successfully configured

bbDeviceNotOpen The device handle provided points to a device that is not open.

bbInvalidVideoUnitsErr The value for units did not match any known value

Test Equipment Plus | 19

bbConfigureTrigger
Configure the Zero-Span trigger

bbStatus bbConfigureTrigger(int device, unsigned int type, unsigned int edge, double
level, double timeout);

Parameters

device Handle to the device being configured.

type Specifies the type of trigger to use. Possible values are
BB_NO_TRIGGER, BB_VIDEO_TRIGGER, and BB_EXTERNAL_TRIGGER. If
an external signal is desired, BNC port 2 must be configured to accept a
trigger (see bbConfigureIO). When BB_NO_TRIGGER is specified, the
other parameters are ignored and this function sets only trigger type.

edge Specifies the edge type of a video trigger. Possible values are
BB_TRIGGER_RISING and BB_TRIGGER_FALLING. If you are using a
trigger type other than a video trigger, this value is ignored but must be
specified.

level Level of the video trigger. The units of this value are determined by the
demodulation type used when initiating the device. If demodulating
AM, level is in dBm units, if demodulating FM, level is in Hz.

timeout timeout specifies the length of a capture window in seconds. The
capture window specifies the length of continuous time you wish to
wait for a trigger. If no trigger is found within the window, the last
sweepTime of data within the data is returned. The capture window
must be greater than sweepTime. If it is not, it will be automatically
adjusted to sweepTime. The timeout/capture window is applicable to
both video and external triggering.

Description

Allows you to configure all zero-span trigger related variables. As with all configure routines, the
changes made here are not reflected until the next initiate.

When a trigger is specified the sweep returned will start approximately 200 microseconds before the
trigger event. This provide a slight view of occurances directly before the event. If no trigger event is
found, the data returned at the end of the timeout period is returned.

Return Values

bbNoError Configured successfully

bbDeviceNotOpenErr The device specified is not open.

bbInvalidParameterErr A parameter specified is not valid.

bbConfigureTimeGate
Configure gate properties

20 API Functions | Test Equipment Plus

bbStatus bbConfigureTimeGate (int device, double delay, double length, double
timeout);

Parameters

device Handle to the device being configured.

delay The time in seconds, from the trigger to the beginning of the gate

length The length in seconds, of the gate

timeout The time in seconds to wait for a trigger. If no trigger is found, the last
length will be used.

Description

Time gates are relative to an external trigger.

Therefore it is necessary to use bbConfigureIO to setup an external trigger.

Return Values

bbNoError Device configured successfully

bbDeviceNotOpenErr Device specified is not open.

bbInvalidParameterErr A supplied parameter is unknown or out of range.

bbConfigureRawSweep
Prepare the device to collect swept ADC data.

bbStatus bbConfigureRawSweep(int device, int start, int ppf, int steps, int
stepsize);

Parameters

device Handle to the device being configured.

start Frequency value in MHz representing the center of the first 20MHz step
in the sweep. Must be a multiple of 20, and no less than 20.

ppf Controls the amount of digital samples to collect at each frequency
step. The number of digital samples collected at each frequency equals
18688 * ppf.

steps Number of steps to take starting with and including the first steps.

stepsize Value must be BB_TWENTY_MHZ

Description

This function configures the device for both BB_RAW_SWEEP and BB_RAW_SWEEP_LOOP modes. This
function allows you to configure the sweep start frequency, the number of 20 MHz steps to take across
the spectrum, and how long to dwell at each frequency. There are restrictions on these settings,
outlined below.

Restrictions

Test Equipment Plus | 21

1) The start parameter must be a multiple of 20MHz. This helps to reduce and eliminate the
majority of spurious responses. This value can alo

2) ppf * steps must be a multiple of 16.
3) The final center frequency, obtained by the equation (start + steps*20), cannot be greater than

6000 (6 GHz).

Return Values

bbNoError The device was successfully configured.

bbDeviceNotOpenErr The device specified is not open.

bbInvalidParameter One or more of the functions requirements were not met.

bbConfigureIO
Configure the two I/O ports on a device

bbStatus bbConfigureIO(int device, unsigned int port1, unsigned int port2);

Parameters

device Handle to the device being configured.

port1 The first BNC port may be used to input or output a 10 MHz time base
(AC or DC coupled), or to generate a general purpose logic high/low
output. Please refer to the example below. All possible values for this
port are found in the header file and are prefixed with “BB_PORT1”

port2 Port 2 is capable of accepting an external trigger or generating a logic
output. Port 2 is always DC coupled. All possible values for this port are
found in the header file and are prefixed with “BB_PORT2.”

Description

NOTE: This function can only be called when the device is idle (not operating in any mode). To ensure
the device is idle, call bbAbort().

There are two configurable BNC connector ports available on the device. Both ports functionality are
changed with this function. For both ports, ‘0’ is the default and can be supplied through this function to
return the ports to their default values. Specifying a ‘0’ on port 1 returns the device to an internal time
base and outputs the time base AC coupled. Specifying ‘0’ on port 2 emits a DC coupled logic low.

For external 10 MHz timebases, best phase noise is achieved by using a low jitter 3.3V CMOS input.

Configure combinations

Port 1 IO For port 1 only a coupled value must be ‘OR’ed
together with a port type. Use the ‘|’ operator to
combine a coupled type and a port type.

BB_PORT1_AC_COUPLED Denotes an AC coupled port

22 API Functions | Test Equipment Plus

BB_PORT1_DC_COUPLED Denotes a DC coupled port

BB_PORT1_INT_REF_OUT Output the internal 10 MHz timebase

BB_PORT1_EXT_REF_IN Accept an external 10MHz time base

BB_PORT1_OUT_LOGIC_LOW

BB_PORT1_OUT_LOGIC_HIGH

Port 2 IO

BB_PORT2_OUT_LOGIC_LOW

BB_PORT2_OUT_LOGIC_HIGH

BB_PORT2_IN_TRIGGER_RISING_EDGE When set, the device is notified of a rising edge

BB_PORT2_IN_TRIGGER_FALLING_EDGE When set, the device is notified of a falling edge

Return Values

bbNoError Device configured successfully.

bbDeviceNotOpenErr Device specified is not open.

bbDeviceNotIdleErr This is returned if the device is currently operating in a mode. The
device must be idle to configure ports.

bbInvalidParameterErr A parameter supplied is unknown.

Example

This example shows how to configure an AC external reference input into port 1 and a emit a logic high
on port 2. Note the ‘|’ operation is used to specify the AC couple.

1. bbConfigureIO (
2. myDeviceNumber,
3. BB_PORT1_AC_COUPLED | BB_PORT1_EXT_REF_IN, // Catch AC external reference
4. BB_PORT2_OUT_LOGIC_HIGH // Output DC logic high
5.);

bbConfigureDemod
Configure audio demodulation operation

bbStatus bbConfigureDemod(int device, int modulationType, double freq, float IFBW,
float audioLowPassFreq, float audioHighPassFreq, float FMDeemphasis);

Parameters

device Handle to the device being configured.

modulationType Specifies the demodulation scheme, possible values are

 BB_DEMOD_AM/FM/Upper sideband (USB)/Lower Sideband (LSB)/CW.

freq Center frequency. For best results, re-initiate the device if the center
frequency changes +/- 8MHz from the initial value.

Test Equipment Plus | 23

IFBW Intermediate frequency bandwidth centered on freq. Filter takes place
before demodulation. Specified in Hz. Should be between 2kHz and
500kHz.

audioLowPassFreq Post demodulation filter in Hz. Should be between 1kHz and 12kHz Hz.

audioHighPassFreq Post demodulation filter in Hz. Should be between 20 and 1000Hz.

FMDeemphasis Specified in micro-seconds. Should be between 1 and 100.

Description

Below is the overall flow of data through our audio processing algorithm.

This function can be called while the device is active.

Return Values

bbNoError Function completed successfully

bbDeviceNotOpenErr The device specified is not open.

Note : If any of the boundary conditions are not met, this function will return with no error but the
values will be clamped to its boundary values.

bbInitiate
Change the operating state of the device

bbStatus bbInitiate(int device, unsigned int mode, unsigned int flag);

Parameters

device Handle to the device being configured.

mode The possible values for mode are BB_SWEEPING, BB_REAL_TIME,
BB_ZERO_SPAN, BB_TIME_GATE, BB_RAW_SWEEP,
BB_RAW_SWEEP_LOOP, BB_AUDIO_DEMOD, and BB_RAW_PIPE.

flag The default value is zero.

 If mode equals BB_ZERO_SPAN, flag can be used to denote the type of
modulation performed on the incoming signal. BB_DEMOD_AM and
BB_DEMOD_FM are the two options.

24 API Functions | Test Equipment Plus

 If mode equals BB_RAW_PIPE, flag is used to denote the retreived
bandwidth. BB_SEVEN_MHZ or BB_TWENTY_MHZ is used to change the
desired capture bandwidth. flag can be used to inform the API to time
stamp data using an external GPS reciever. Mask the bandwidth flag (‘|’
in C) with BB_TIME_STAMP to achieve this. See Appendix:Using a GPS
Receiver to Time-Stamp Data for information on how to set this up.

Description

bbInitiate configures the device into a state determined by the mode parameter. For more information
regarding operating states, refer to the Theory of Operation and Modes of Operation sections. This
function calls bbAbort before attempting to reconfigure. It should be noted, if an error is returned, any
past operating state will no longer be active.

Pay special attention to the bbInvalidParameterErr description below.

Return Values

bbNoError Device successfully configured

bbDeviceNotOpenErr The device handle provided does not point to an open device.

bbInvalidParameterErr The value for mode did not match any known value.

 In real-time mode, this value may be returned if the span limits defined
in the API header are broken. Also in real-time mode, this error will be
returned if the resolution bandwidth is outside the limits defined in the
API header.

 In time-gate analysis mode this error will be returned if span limits
defined in the API header are broken. Also in time gate analysis, this
error is returned if the bandwidth provided require more samples for
processing than is allowed in the gate length. To fix this, increase
rbw/vbw.

bbAllocationLimitError This value is returned in extreme circumstances. The API currently limits
the amount of RAM usage to 1GB. When exceptional parameters are
provided, such as very low bandwidths, or long sweep times, this error
may be returned. At this point you have reached the boundaries of the
device. The processing algorithms are optimized for speed at the
expense of space, which is the reason this can occur.

bbBandwidthErr This error is returned if your RBW is larger than your span. (Sweep
Mode)

bbFetchTrace
Get one sweep from a configured and initiated device

bbStatus bbFetchTrace(int device, int arraySize, double *min, double *max);

Parameters

device Handle of an initialized device.

Test Equipment Plus | 25

arraySize A provided arraySize. This value must be equal to or greater than the
traceSize value returned from bbQueryTraceInfo.

min Pointer to a double buffer, whose length is equal to or greater than
traceSize returned from bbQueryTraceInfo.

max Pointer to a double buffer, whose length is equal to or greater than
traceSize returned from bbQueryTraceInfo.

Description

Returns a minimum and maximum array of values relating to the current mode of operation. If the
detectorType provided in bbConfigureAcquisition is BB_AVERAGE, the array will be populated with the
same values. Element zero of each array corresponds to the startFreq returned from bbQueryTraceInfo.

Return Values

bbNoError Successful. pSweepDataMin/Max are populated with amplitude values.

bbNullPtrErr If either min or max are null, bbNullPtrErr is returned immediately.

bbDeviceNotOpenErr device is not a handle to an open device.

bbDeviceNotConfiguredErr Returned if the device is idle or in BB_RAW_PIPE mode.

bbBufferTooSmallErr The arraySize parameter passed is less than the trace size returned from
bbQueryTraceInfo.

bbADCOverflow This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, a combination of increasing attenuation, decreasing gain,
or increasing reference level(when gain is automatic) will allow for more
headroom.

bbNoTriggerFound In time-gated analysis, if the spectrum returned is not representative of
the gate specified, this warning is returned.

 In zero-span analysis, if the device is configured to anticipate a video or
external trigger, this warning is returned when the trigger condition has
not been met for this trace.

bbPacketFramingErr This error occurs when data loss or miscommunication has occurred
between the device and the API. During normal operation we do not
expect this error to occur. If you find this error occurs frequently, it may
be indicative of larger issues. If this error is returned, the data returned
is undefined. The device should be power cycled manually or with the
bbPreset routine.

bbDeviceConnectionErr Device connection issues were present in the acquisition of this sweep.
See Error Handling : Device Connection Errors

bbUSBTimeoutErr The USB transfer timed out during the requested sweep. Causes may
include a faulty USB cable or high processor/kernel load. See Error
Handling: Device Connection Errors

26 API Functions | Test Equipment Plus

bbFetchAudio
Retrieve 4096 audio samples

bbStatus bbFetchAudio(int device, float *audio);

Parameters

device Handle of an initialized device.

audio Pointer to an array of 4096 32-bit floating point values

Description

If the device is initiated and running in the audio demodulation mode, the function is a blocking call
which returns the next 4096 audio samples. The approximate blocking time for this function is 128 ms if
called again immediately after returning. There is no internal buffering of audio, meaning the audio will
be overwritten if this function is not called in a timely fashion. The audio values are typically -1.0 to 1.0,
representing full-scale audio. In FM mode, the audio values will scale with a change in IF bandwidth.

Return Values

bbNoError Function returned successfully

bbDeviceNotOpenErr The device specified is not open

bbDeviceNotConfiguredErr The device is not initiated and running the audio demodulation mode.

bbNullPtrErr audio pointer is NULL

bbDeviceConnectionErr Device connection issues were present in the acquisition of audio. See
Error Handling : Device Connection Errors.

bbFetchRawCorrections
Retrieve information needed to make amplitude corrections on data collected in the raw-pipe mode

bbStatus bbFetchRawCorrections(int device, float *corrections, int *index, double
*startFreq);

Parameters

device Handle of an initialized device.

corrections 32-bit float array of length 2048. Correction values are decibel.

index Index into the corrections array where the correction data begins.

startFreq Frequency associated with the correction at index.

Description

When this function returns successfully, the correction array will contain the frequency domain
correction constants for the given bandwidth chosen. The corrections are modified based on
temperature, gain, attenuation, and frequency. If any of these change, a new correction array should be
requested. The correction array will only be generated again on a new bbInitiate().

Test Equipment Plus | 27

The correction arrays and returned values differ slightly depending on the 7 or 20 MHz bandwidth
chosen. Each one is described in depth below.

20 MHz
The correction array represents 40 MHz of bandwidth where frequencies outside the requested 20 MHz
are zeroed out. The first non-zero sample begins at corrections[index]. The frequency at this index is
startFreq. The bin size of each index is implied through 40 MHz divided by the length of the array,
(40.0e6 / 2048) = 19531.25 Hz. If an Fourier transform is applied on the IF data, the correction values
will line up with the usable 20 MHz bandwdith.

7MHz
The correction array represents 10 Mhz of bandwdith where the usable 7 MHz is centered and all values
outside the usable 7 MHz is zeroed. The index returned is the first non zero sample in the array. The
startFreq returned is the frequency of the first sample in the array, corrections[0]. Every other sample’s
frequency can be determined with the bin size. The bin size for this array is (10.0e6 / 2048) = 4882.8125
Hz. If a complex Fourier Transform is applied to the IQ data, the correction values will line up with the
usable 7 MHz bandwidth.

Tips
Time domain corrections of the signal’s amplitude require two steps. First, an inverse Fourier Transform
must be performed on the entire correction array (including zero’ed portions). This results in a 4096
sample kernel. Second, the kernel is used in convolution with the time domain data. If a larger/smaller
kernel is desired, interpolate/extrapolate the correction array while it is in the frequency domain to the
desired length. Lengths which are powers of two are suggested.

Frequency domain correction of the signal’s amplitude requires you to first transform the raw data into
the frequency domain. Performing an Fourier transform on the incoming data will yeild a frequency
domain array that will align with the correction array. You can index the Transform results using the
index returned from this function if you wish or apply the whole array. Remember that the corrections
are in dB. If larger Transform sizes are desired, you can interpolate the correction array to the desired
size. (Be aware! This will change the index of the first non-zero correction, but the results of the FFT will
still align the with usable 20 MHz)

Return Values

bbNoError Function returned successfully

bbNullPtrErr One or more parameters provided is null

bbDeviceNotOpenErr The device specified is not open

bbDeviceNotConfigured The device specified is not currently configured in raw-pipe mode

bbFetchRaw
Retrieve raw data from a streaming device

bbStatus bbFetchRaw(int device, float *buffer, int *triggers);
bbStatus bbFetchRaw_s(int device, short *buffer, int *triggers);

Parameters

28 API Functions | Test Equipment Plus

device Handle of a streaming device.

buffer A pointer to an array of length 299008. The contents of this buffer will
be updated. The format of the data to be stored in buffer depends on
the current mode of the device and which bbFetchRaw function is
called.

triggers triggers is a pointer to an array of 68 integers representing external
trigger information relative to the buffer. Read the description below
for in-depth discussion.

Description

Fetch a chunk of data while the device is in the raw data pipe mode. A buffer will data represent either
299008/80,000,000 or 299008/20,000,000 seconds worth of time depending on the bandwidth selected
at initiate. The structure of the data is described in Modes of Operation:Raw Data. To ensure full
coverage the function must be called ~267 times with a 20 MHz bandwidth and ~67 with 7 MHz
bandwidth. Only 120ms of data is buffered before data loss occurs. Ensure no additional processing or
disk I/O is occuring in the same thread as the one acquiring the data to ensure no data loss.

The values returned in buffer represent full scale. For 32-bit floating point samples, the values range
from -1.0 to 1.0. For 16-bit signed short samples, the values range from -215 to 215-1. Values at or near
the absolute max might indicate compression. Adjusting gain and attenuation is the best way to achieve
the most dynamic range of samples returned.

The triggers parameter can be null(0) if you are not interested in trigger position, otherwise triggers
should point to an array of 68 32-bit integers. Starting at triggers[0], positive values will indicate
positions within the returned buffer array where an external trigger occurred. The positions are zero
based, meaning the positions will be between 0 and 299007. (Note: the minimum trigger position
detected is approximately 90) If no triggers occurred during the acquisition of the raw data, all values
will be 0. If for example, 3 external triggers occurred during the acquisition, the first three values of the
triggers array will be non-negative, and the remaining equal to 0. A returned trigger array might look like
this.

The filters used to downconvert the 20 MHz IF to 7 MHz IQ cause the data to incur a 3.3 micro second
delay which is accounted for in the trigger index values.

triggerArray[68] = [917, 46440, 196264, 0, 0, …, 0];
This array indicates three external triggers were detected at buffer[917], buffer[46440], and
buffer[196264]. They will always be in increasing order.

Only the first 17 triggers will be registered every 1/267th of a second.

Note: The ports on a broadband device need to be configured to receive external triggers to take
advantage of the trigger array.

See the Code Examples for an example of this function.

The values returned are in the time domain and are uncorrected. (See bbFetchRawCorrections() for
information on making amplitude corrections on the raw data)

Test Equipment Plus | 29

Return Values

bbNoError The device successfully began streaming.

bbDeviceNotOpenErr device is not a handle to an open device.

bbDeviceNotConfiguredErr The device has not been configured for retrieving raw data

bbNullPtrErr This is returned if buffer is a null pointer.

bbPacketFramingErr This error occurs when data loss or miscommunication has occurred
between the device and the API. During normal operation we do not
expect this error to occur. If you find this error occurs frequently, it may
be indicative of larger issues. If this error is returned, the data returned
is undefined. The device should be power cycled manually or with the
bbPreset routine.

bbADCOverflow This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, try a combination of increasing attenuation and decreasing
gain.

bbDeviceConnectionErr Device connection issues were present in the acquisition of data. See
Error Handling : Device Connection Errors.

bbFetchRawSweep
Retrieve a single sweep in the raw sweep mode

bbStatus bbFetchRawSweep(int device, short *buffer);

Parameters

device Handle of an initialized device.

buffer Pointer to an array of signed short integers

Description

This function is used to collect a single sweep for a device configured in raw sweep mode. The length of
the buffer provided is determined by the settings used to configure the device for raw sweep mode. This
length can be determined using the equation.

𝐵𝑢𝑓𝑓𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ = 18688 ∗ 𝑝𝑝𝑓 ∗ 𝑠𝑡𝑒𝑝𝑠
If the function returns successfully the array will contain a full sweep. The shorts will

Return Values

bbNoError Function returned successfully. Buffer contains the entire sweep.

bbNullPtrErr buffer is null

bbDeviceNotOpenErr Device specified is not open

bbDeviceNotConfiguredErr Device specified is not configured and initiated for raw sweeps.

30 API Functions | Test Equipment Plus

bbPacketFramingErr This error occurs when data loss or miscommunication has occurred
between the device and the API. During normal operation we do not
expect this error to occur. If you find this error occurs frequently, it may
be indicative of larger issues. If this error is returned, the data returned
is undefined. The device should be power cycled manually or with the
bbPreset routine.

bbDeviceConnectionErr Device connection errors were present in the acquisition of this sweep.
See Error Handling : Device Connection Errors.

bbStartRawSweepLoop
Begin the raw sweep loop

bbStatus bbStartRawSweepLoop(int device, void(*sweep_callback)(short *buffer, int
len));

Parameters

device Handle of an initialized device.

sweep_callback Pointer to a C function. Used as a callback to notify the user of
completed sweeps.

Description

This function can be called after being configured and initiated in RAW_SWEEP_LOOP mode. The device
begins sweeping on the first call to this function after the device has been initiated. It is possible to call
this function multiple times per initiate to change the function call back used.

If this function returns successfully, the device begins sweeping immediately. The function provided is
set as the callback function used when a sweep is completed. sweep_callback is called once per sweep
completion. The function passes two parameters, a pointer to the buffer of data for the sweep, and the
length of the buffer.

The data buffer will not be overwritten when in the function body of sweep_callback. The API will
maintain a circular list of buffers to store sweeps in. The API will store up to ¼ to ½ seconds worth of
sweeps depending on parameters. If the function body of sweep_callback exceeds this amount of time,
it is possible for the API to need to move ahead and skip over the buffer the user is still accessing. This
will cause a loss of data. It is recommended the function body of sweep_callback is short, preferably
simply copying the data from buffer into your own data structure. This ensures you receive every sweep
and make your own decisions on when to drop/ignore sweeps.

The sweep_callback function is not called in the main thread of execution. It is called once per sweep,
which can result in the function being called anywhere from 3-250 milliseconds. It is the responsibility of
the user to not index the buffer out of range. The buffer contents can be modified by the user only
during the function body of sweep_callback, once the function returns, the API is free to overwrite the
contents. Modifying the contents of the buffer not in the function body of sweep_callback is undefined.
The user should not attempt to manage any of the memory provided through the buffer pointers.

The device sweeps indefinitely until bbAbort or bbCloseDevice is called. When operation is suspended
via bbAbort, the device must be reconfigured and initiated again before calling this function.

Test Equipment Plus | 31

Return Values

bbNoError The function returned successfully and is now sweeping.

bbNullPtrErr sweep_callback parameter is null.

bbDeviceNotOpenErr The device specified is not open.

bbDeviceNotConfiguredErr The device has not be configured and initiated for raw sweep loop
mode.

bbQueryTraceInfo
Returns values needed to query and analyze traces

bbStatus bbQueryTraceInfo(int device, unsigned int *traceLen, double *binSize, double
*start);

Parameters

device Handle of an initialized device.

traceLen A pointer to an unsigned int. If the function returns successfully
traceLen will contain the size of arrays returned by bbFetchTrace.

binSize A pointer to a 64bit floating point variable. If the function returns
successfully, binSize will contain the frequency difference between two
sequential bins in a returned sweep. In Zero-Span mode, binSize refers
to the difference between sequential samples in seconds.

start A pointer to a 64bit floating point variable. If the function returns
successfully, start will contain the frequency of the first bin in a
returned sweep. In Zero-Span mode, start represents the exact center
frequency used by the API.

Description

This function should be called to determine sweep characteristics after a device has been configured
and initiated. For zero-span mode, startFreq and binSize will refer to the time domain values. In zero-
span mode startFreq will always be zero, and binSize will be equal to sweepTime/traceSize.

Return Values

bbNoError Successful

bbNullPtrErr If any pointer passed as a parameter is null, bbNullPtrErr will be
returned and no values will be returned.

bbDeviceNotOpenErr The device provided does not refer to an open device.

bbDeviceNotConfiguredErr The device is not in a known operational state or is idle. This error will
also be returned if the device is in BB_RAW_PIPE mode.

bbQueryStreamingCenter
Get the center frequency of a streaming device

32 API Functions | Test Equipment Plus

bbStatus bbQueryStreamingCenter(int device, double *center);

Parameters

device Handle of an initialized device.

center Pointer to a double which will receive the absolute center frequency of
the streaming device.

Description

The function retrieves the center frequency of the 20 MHz IF bandwidth of a device currently initialized
in raw pipe mode. The center returned is representative of ¼ of the IF sample rate. The 20 MHz of usable
bandwidth is centered on this frequency.

Return Values

bbNoError No error.

bbNullPtrErr Pointer to center is null.

bbDeviceNotOpenErr device is not a handle to an open device.

bbDeviceNotConfiguredErr The device is not configured in the 20 MHz IF streaming mode.

bbQueryTimestamp
Retrieve an absolute time of a data packet

bbStatus bbQueryTimestamp(int device, unsigned int *seconds, unsigned int
*nanoseconds);

Parameters

device Handle of an initialized device.

seconds Seconds since midnight (00:00:00), January 1, 1970, coordinated
universal time(UTC).

nanoseconds nanoseconds between seconds and seconds + 1

Description

This function is used in conjunction with bbSyncCPUtoGPS and a GPS device to retrieve an absolute time
for a data packet in raw pipe mode. This function returns an absolute time for the last packet retrieved
from bbFetchRaw. See the Appendix:Code Examples for information on how to setup and interpret the
time information.

Return Values

bbNoError Successful

bbNullPtrErr seconds or nanoseconds parameters are null.

bbDeviceNotOpenErr device is not a handle to an open device.

bbDeviceNotConfiguredErr The device is not configured and running in RAW_PIPE mode.

Test Equipment Plus | 33

bbQueryDiagnostics
Retrieve the current internal device characteristics

bbStatus bbQueryDiagnostics(int device, float *temperature, float *voltage1_8, float
*voltage1_2, float *voltageUSB, float *currentUSB);

Parameters

device Handle of an open device.

temperature Pointer to 32bit float. If the function is successful temperature will point
to the current internal device temperature, in degrees Celsius. See
“bbSelfCal” for an explanation on why you need to monitor the device
temperature.

voltage1_8 Factory use only: Internal regulator.

voltage1_2 Factory use only: Internal regulator.

voltageUSB USB operating voltage, in volts. Acceptable ranges are 4.40 to 5.25 V.

currentUSB USB current draw, in mA. Acceptable ranges are 800 – 1000 mA.

Description

Pass NULL to any parameter you do not wish to query.

The device temperature is updated in the API after each sweep is retrieved. The temperature is returned
in Celsius and has a resolution of 1/8th of a degree. A temperature above 70°C or below 0°C indicates
your device is operating outside of its normal operating temperature, and may cause readings to be out
of spec, and may damage the device.

A USB voltage of below 4.4V may cause readings to be out of spec. Check your cable for damage and
USB connectors for damage or oxidation.

Return Values

bbNoError Successfully retrieved the temperature

bbDeviceNotOpenErr Device specified is not currently open/valid

bbAbort
Stop the current mode of operation

bbStatus bbAbort(int device);

Parameters

device Handle of an initialized device.

Description

Stops the device operation and places the device into an idle state.

Return Values

34 API Functions | Test Equipment Plus

bbNoError The device has been successfully suspended.

bbDeviceNotOpenErr The device indicated by device is not open.

bbDeviceNotConfiguredErr The device is already idle.

bbPreset
Trigger a device reset

bbStatus bbPreset(int device);

Parameters

device Handle of an open device.

Description

This function exists to invoke a hard reset of the device. This will function similarly to a power
cycle(unplug/re-plug the device). This might be useful if the device has entered an undesirable or
unrecoverable state. Often the device might become unrecoverable if a program closed unexpectedly,
not allowing the device to close properly. This function might allow the software to perform the reset
rather than ask the user perform a power cycle.

Viewing the traces returned is often the best way to determine if the device is operating normally. To
utilize this function, the device must be open. Calling this function will trigger a reset which happens
after 2 seconds. Within this time you must call bbCloseDevice to free any remaining resources and
release the device serial number from the open device list. From the time of the bbPreset call, we
suggest 3 to more seconds of wait time before attempting to re-open the device.

Return Values

bbNoError Function completed successfully, the device will be reset.

bbDeviceNotOpen The device specified is not currently open.

Example

1. // Notes: Invoking a sleep in the main thread of execution may be undesirable
2. // in a GUI application. This function is best performed in a separate thread.
3. // The amount of time to Sleep is dependent on how fast the device will register
4. // on your machine after it resets. A longer sleep time may be preferred or multiple
5. // attempts to open the device until it returns bbNoError
6. bool PresetRoutine() {
7.
8. bbPreset(myID);
9. bbCloseDevice(myID);
10.
11. Sleep(3000); // Windows sleep function
12.
13. // Alternative 1: Assume it's ready
14. if(bbOpenDevice(&myID) == bbNoError)
15. return true;
16. else
17. return false;
18.
19.

Test Equipment Plus | 35

20. // Alternative 2: Try a few times, it may not be ready at first
21. int trys = 0;
22. while(trys++ < 3) {
23. if(bbOpenDevice(&myID) == bbNoError)
24. return true;
25. else
26. Sleep(500);
27. }
28. return false;
29. }

bbSelfCal
Calibrate the device for significant temperature changes.

bbStatus bbSelfCal(int device);

Parameters

device Handle of an open device.

Description

This function causes the device to recalibrate itself to adjust for internal device temperature changes,
generating an amplitude correction array as a function of IF frequency. This function will explicitly call
bbAbort() to suspend all device operations before performing the calibration, and will return the device
in an idle state and configured as if it was just opened. The state of the device should not be assumed,
and should be fully reconfigured after a self-calibration.

Temperature changes of 2 degrees Celsius or more have been shown to measurably alter the
shape/amplitude of the IF. We suggest using bbQueryDiagnostics to monitor the device’s temperature
and perform self-calibrations when needed. Amplitude measurements are not guaranteed to be
accurate otherwise, and large temperature changes (10°C or more) may result in adding a dB or more of
error.

Because this is a streaming device, we have decided to leave the programmer in full control of when the
device in calibrated. The device is calibrated once upon opening the device through bbOpenDevice and is
the responsibility of the programmer after that.

Note:
After calling this function, the device returns to the default state. Currently the API does not retain state
prior to the calling of bbSelfCal(). Fully reconfiguring the device will be necessary.

Return Values

bbNoError The device was recalibrated successfully.

bbDeviceNotOpenErr The device specified is either not open or valid.

bbSyncCPUtoGPS
Synchronize a GPS reciever with the API

bbStatus bbSyncCPUtoGPS(int comPort, int baudRate);

36 API Functions | Test Equipment Plus

Parameters:

comPort Com port number for the NMEA data output from the GPS reciever.

baudRate Baud Rate of the Com port.

Description:

The connection to the COM port is only established for the duration of this function. It is closed when
the function returns. Call this function once before using a GPS PPS signal to time-stamp RF data. The
synchronization will remain valid until the CPU clock drifts more than ¼ second, typically several hours,
and will re-synchronize continually while streaming data using a PPS trigger input.

This function calculates the offset between your CPU clock time and the GPS clock time to within a few
milliseconds, and stores this value for time-stamping RF data using the GPS PPS trigger. This function
ignores time zone, limiting the calculated offset to +/- 30 minutes. It was tested using an FTS 500 from
Connor Winfield at 38.4 kbaud. It uses the “$GPRMC” string, so you must set up your GPS to output this
string.

Return Values:

bbNoError Successful, describe what it means to be successful

bbDeviceNotOpenErr No device is open at the time this function is called.

bbGPSErr Returned when no GPS reciever was found, unable to establish
communication with the specified port, or unable to decipher the
GPRMC string.

bbGetDeviceType
Retrieve the model type of a device handle

bbStatus bbGetDeviceType(int device, unsigned int *type);

Parameters

device Handle of an open device.

type Pointer to an integer to receive the model type.

Description

This function may be called only after the device has been opened. If the device successfully opened,
type will contain the model type of the device pointed to by handle.

Possible values for type are BB_DEVICE_NONE, BB_DEVICE_BB60A, BB_DEVICE_BB60C, and
BB_DEVICE_BB124. These values can be found in the bb_api header file.

Return Values

bbNoError Successfully retrieved device type

bbDeviceNotOpenErr The device specified is not open

bbNullPtrErr The parameter type is null

Test Equipment Plus | 37

bbGetSerialNumber
Retrieve the serial number of the device

bbStatus bbGetSerialNumber(int device, unsigned int *sid);

Parameters

device Handle of an open device.

sid Pointer to unsigned int which will be assigned the serial number of the
broadband device specified with device.

Description

This function may be called only after the device has been opened. The serial number returned should
match the number on the case.

Return Values

bbNoError Successfully retrieved the serial number. sid will contain the serial
number.

bbDeviceNotOpenErr The device specified is not open

bbNullPtrErr The parameter sid is null

bbGetFirmwareVersion
Determine the firmware version of a SignalHound broadband device

bbStatus bbGetFirmwareVersion(int device, int *version);

Parameters

device Handle of an open device.

version Pointer to an integer, will contain the firmware version of the specified
device if this function returns successfully.

Description

Use this function to determine which version of firmware is associated with the specified device.

Return Values

bbNoError Function returned successfully.

bbDeviceNotOpenErr The device specified is not open.

bbNullPtrErr The parameter version is null.

bbGetAPIVersion
Get API software version string

const char* bbGetAPIVersion();

38 Error Handling | Test Equipment Plus

Return Values

const char* The returned string is of the form

 major.minor.revision

 Ascii periods (“.”) separate positive integers. Major/Minor/Revision are
not gauranteed to be a single decimal digit. The string is null
terminated. An example string is below ..

 [‘1’ | ‘.’ | ‘2’ | ‘.’ | ‘1’ | ‘1’ | ‘\0’] = “1.2.11”

bbGetErrorString
Produce an error string from an error code

const char* bbGetErrorString(bbStatus code);

Parameters

code A bbStatus value returned from an API call.

Description

Produce an ascii string representation of a given status code. Useful for debugging.

Return Values

const char* A pointer to a non-modifiable null terminated string. The memory
should not be freed/deallocated.

Error Handling

All API functions return the type bbStatus. bbStatus is an enumerated type representing the success of a
given function call. The return values can be found in bb_api.h. There are three types of returned status
codes.

1) No error : Represented with value bbNoError.
2) Error, interrupting function execution : Represented by a return value suffixed with “Err”. All

Error statuses are negative.
3) Warning : Each function may return a warning code. The system will still function but potentially

in an undesirable state.

The best way to address issues is to check the return values of the API functions. An API function is
provided to return a string representation of given status code for easy debugging.

Device Connection Errors

The API issues errors when fatal connection issues are present during normal operation of the device.
The two major errors in this category are bbPacketFramingErr and bbDeviceConnectionErr. These errors
are reported on fetch routines, as these routines contain all major device I/O.

Test Equipment Plus | 39

bbPacketFramingErr: Packet framing issues can occur in low power settings or when large interrupts
occur on the PC (typically large system interrupts). This error can be handled by manually cycling the
device power, or programmatically by using the preset routine.

bbDeviceConnectionErr: Device connection errors are the result of major USB issues most commonly
being the device has lost power (unplugged). These errors should be handled by completely closing the
software and cycling the device power, or, if you wish for the software to remain open, call the function
bbCloseDevice before cycling the device power and re-opening the device as usual.

Appendix

Code Examples
This sections contains some C examples for interacting with a device. Each example will have a short
description describing the code in detail.

Common
All API functions return a status code responsible for reporting errors, warnings or success. It can be
helpful to write a macro or function for checking these status codes.

1. #define CHECK_BB_STATUS(status) \
2. if(status != bbNoError) { \
3. logError(bbGetErrorString(status)); \
4. doErrorHandlingRoutine(status); \
5. }

This macro can be used after each API call and can contain any error handling and reporting logic
necessary. A macro such as this can clean up code, and keep logic in one location making error handling
and reporting changes fast and easy.

Sweep Mode
This example shows you how to set up the device for standard spectrum sweeps. The example begins by
defining common variables used in the process. A bbStatus variable is used to catch warning or errors on
some of the more important API calls such as opening the device, initiating the device, and retrieving
sweeps. devID is used to store the handle to our open device. The remaining variables are used to define
the characteristics of the sweeps returned from the device.

1. /* Open a device, configure it, and retrieve a sweep */
2.
3. bbStatus status;
4. int devID, traceSize;
5. double *min, *max, binSize, startFreq;
6.
7. /* Open the device, retrieve the device handle */
8. status = bbOpenDevice(&devID);
9. if(status != bbNoError)
10. myErrorRoutine(status);
11.
12. /* Simple configuration */
13.
14. bbConfigureAcquisition(
15. devID,

40 Appendix | Test Equipment Plus

16. BB_MIN_AND_MAX,
17. BB_LOG_SCALE // Log scaled results
18.);
19.
20. bbConfigureCenterSpan(
21. devID,
22. 900.0e6, // 900 MHz center
23. 20.0e6 // 20 MHz span
24.);
25.
26. bbConfigureLevel(
27. devID,
28. 0.0, // 0 db Reference level
29. BB_AUTO_ATTEN // Automatically choose attenuation
30.);
31.
32. bbConfigureGain(
33. devID,
34. BB_AUTO_GAIN
35.);
36.
37. bbConfigureSweepCoupling(
38. devID,
39. 10.0e3, // 10 kHz rbw
40. 10.0e3, // 10 kHz vbw
41. 0.001, // 1 ms sweep acquisition
42. BB_NATIVE_RBW, // Use native rbw
43. BB_NO_SPUR_REJECT // No software spur rejection
44.);
45.
46. bbConfigureWindow(
47. devID,
48. BB_BLACKMAN // Blackman windowing function
49.);
50.
51. bbConfigureProcUnits(
52. devID,
53. BB_LOG // Video processing performed in logarithmic scale
54.);
55.
56. status = bbInitiate(
57. devID,
58. BB_SWEEPING // Sweep mode
59. 0 // Use zero if not in zero-span mode
60.);
61.
62. if(status != bbNoError)
63. myErrorRoutine(status);
64.
65. // Device initiated, get sweep information
66. bbQueryTraceInfo(
67. devID,
68. &traceSize, // Get trace size
69. &binSize, // Get freq per returned sample
70. &startFreq // Get accurate start frequency
71.);
72.
73. min = new double[traceSize];
74. max = new double[traceSize];
75.
76. // Continually fetch sweep information

Test Equipment Plus | 41

77. while(yourProgramIsRunning) {
78.
79. bbFetchTrace(
80. devID,
81. traceSize,
82. min,
83. max
84.);
85.
86. displayTrace(min, max); // Your custom routine
87.
88. } /* while(programRunning) */
89.
90.
91. // Your custom error handling routine
92. void myErrorRoutine(bbStatus code) {
93.
94. cerr << bbGetErrorString(code);
95. handleError(code);
96.
97. }

Raw Data Pipe Example
This code snippet shows how you would open a device and retrieve raw data values. For brevity, error
checking is left out. The configuration is much simplified due to no signal processing or corrections being
performed on the data. The only configurations which modify the output are gain and attenuation.
Remember that in the raw data pipe mode, the device produces samples at a rate of 80 million per
second! This means that keeping up with the flow of data requires calling bbFetchRaw ~267 times per
second! Any processing or data saving done in the same thread must be done quickly (~3ms) if you want
no gaps in the data. The API accumulates 120ms of data before data loss happens.

1. /* Retrieving raw ADC values */
2. /* Also shows how to retrieve external trigger occurrences
3. from the returned trigger array */
4.
5. int devID;
6. float buf = new float[BB_RAW_PACKET_SIZE];
7. int triggers[68]; // From bbFetchRaw
8. std::vector<int> triggerList; // Just triggers
9.
10. bbOpenDevice(&devID);
11.
12. bbConfigureCenterSpan(
13. devID,
14. 2500.0e9, // 2.5 GHz center
15. 20.0e6 // 20 MHz span is default for raw-pipe mode
16.);
17.
18. bbConfigureLevel(
19. devID,
20. 0.0, // not applicable if gain is selected
21. 10.0 // 10 db attenuation
22.);
23.
24. bbConfigureGain(
25. devID,
26. 1 // low gain
27.);

42 Appendix | Test Equipment Plus

28.
29. bbConfigureIO(
30. devID,
31. 0, // default
32. BB_PORT2_IN_TRIGGER_RISING_EDGE // Catch rising triggers on port 2
33.);
34.
35. bbInitiate(
36. devID,
37. BB_RAW_PIPE,
38. BB_TWENTY_MHZ // Could also be BB_SEVEN_MHZ
39.);
40.
41. while(streamingData) {
42.
43. bbFetchRaw(
44. devID,
45. buf, // spectrum
46. triggers // triggers
47.);
48.
49. // Extract just the trigger positions into a vector
50. int i = 0;
51. while(triggers[i]) {
52. triggerList.push_back(triggers[i]);
53. i++;
54. }
55.
56. doSomethingWithData(buf, triggerList); // Save/process/display
57.
58. } // while(streaming)

Zero-Span Triggering
This code snippet shows you how to initialize and configure the device for zero-span mode with an
external trigger. For brevity, error handling and unrelated configuration API calls are omitted.

1. /* Configure Zero-Span and an external trigger */
2.
3. int devID;
4.
5. bbOpenDevice(&devID);
6.
7. //
8. // Other configurations here
9. //
10. // bbConfigureAcquisition
11. // bbConfigureCenterSpan
12. // bbConfigureLevel
13. // bbConfigureSweepCoupling
14. //
15.
16. // Configure our trigger, tell the device to use an external trigger
17. bbConfigureTrigger(
18. devID,
19. BB_EXTERNAL_TRIGGER,
20. 0, // n/a for external trigger
21. 0, // n/a for external trigger
22. 0.032 // wait up to 32 ms for trigger
23.);
24.

Test Equipment Plus | 43

25. // The device now expects an external trigger, we configure port 2 for a trigger
26. bbConfigureIO(
27. devID,
28. 0, // Not using port1, 0 is default
29. BB_PORT2_IN_TRIGGER_RISING_EDGE // trigger on rising edge
30.);
31.
32. bbInitiate(
33. devID,
34. BB_ZERO_SPAN, // Zero-Span mode
35. BB_DEMOD_FM // FM demodulation
36.);
37.
38. /*
39. The device is now ready for an external trigger.
40. From here, we would get our trace information, and
41. begin getting sweeps.
42. */

Raw Sweep Example
The example below shows how you can prepare the device to perform raw sweeps.

1. bbConfigureLevel(
2. id,
3. my_ref_level, /* Just above the max expected input */
4. BB_AUTO_ATTEN
5.);
6.
7. bbConfigureGain(
8. id,
9. BB_AUTO_GAIN
10.);
11.
12. bbConfigureRawSweep(
13. id,
14. 20, /* First center at 20MHz */
15. 2, /* 18688 * 2 samples at each step */
16. 16, /* Take 16 steps */
17. BB_TWENTY_MHZ /* Forced parameter */
18.);
19.
20. /* Allocate enough samples for the full sweep */
21. short *sweep = new short[18688 * 2 * 16];
22.
23. /* Setup the device */
24. bbInitiate(id, BB_RAW_SWEEP, 0);
25.
26. /* Get one sweep */
27. bbFetchRawSweep(id, sweep);
28.
29. /* 'sweep' variable now contains 16 20MHz streams
30. with center frequencies of 20, 40, 60, … , 320 (MHz)
31. Each 20MHz stream contains 18688 * 2 samples
32. The stream format is the same IF format described
33. in the raw data mode
34. */

44 Appendix | Test Equipment Plus

Using a GPS Receiver to Time-Stamp Data
With minimal effort it is possible to determine the absolute time (up to 50ns) of the ADC samples. This
functionality is only available when using the device in the “raw pipe” mode.

What’s needed:

1) GPS Receiver capable providing NMEA data, specifically the GPRMC string, and a 1PPS output.
(Tested with Xenith TBR FTS500)

2) The NMEA data must be provided via RS232 (Serial COM port) only once during application
startup, releasing the NMEA data stream for other applications such as a “Drive Test Solution”
to map out signal strengths.

Order of Operations:

1) Ensure correct operation of your GPS reciever.
2) Connect the 1PPS reciever output to port 2 of the device.
3) Connect the RS232 reciever output to your PC.
4) Determine the COM port number and baud rate of the data transfer over RS232.
5) Open the device via bbOpenDevice()
6) Ensure the RS232 connection is not open.
7) Use bbSyncCPUtoGPS() to synchronize the API timing with the current GPS time. This function

will release the connection when finished.
8) Configure the device for raw pipe mode.
9) Before initiating the device, use bbConfigureIO and configure port 2 for an incoming rising edge

trigger via BB_PORT2_IN_TRIGGER_RISING_EDGE.
10) Call bbInitiate(id, BB_RAW_PIPE, BB_TIME_STAMP). The BB_TIME_STAMP argument will tell the

API to look for the 1PPS input trigger for timing.
11) If initiated successfully you can now fetch data via bbFetchRaw(). Calling the function

bbQueryTimestamp() will return the time of the first sample in the array of data collected from
the last bbFetchRaw().

12) From the time retrieved, you can estimate the time of any sample knowing the difference in
time between two samples is typically 12.5ns or 1/80000000.

Code Example
Here we see a sample program following the steps mentioned above for setting up and retrieving time
stamps for data.

1. /* Configure and prepare the device for time stamping */
2.
3. int id;
4. float *data = new float[299008];
5.
6. // Open Device as usual
7. bbOpenDevice(&id);
8.
9. // Configuration
10. bbConfigureCenterSpan(id, 900.0e6, 20.0e6);
11. bbConfigureLevel(id, 0, 10);
12. bbConfigureGain(id, BB_HIGH_GAIN);
13.
14. // The device MUST be ready to accept input triggers on port 2
15. // The 1 PPS trigger will be connected to port 2
16. bbConfigureIO(id, 0, BB_PORT2_IN_TRIGGER_RISING_EDGE);

Test Equipment Plus | 45

17.
18. // At this point, the GPS receiver must be operational
19. // The RS232 connection cannot be open, and the com port and baud rate
20. // must be known
21. // Ensure the receiver is "locked"
22. bbSyncCPUtoGPS(3, 38400);
23.
24. // If syncCPUtoGPS returned successfully the device can now be initiated
25. // and the RS232 connection should now be closed.
26. // Note: BB_TIME_STAMP is required so the device treats input triggers as the
27. // GPS 1PPS
28. bbInitiate(id, BB_RAW_PIPE, BB_TIME_STAMP);
29.
30. // We can now retrieve data
31. while(programRunning) {
32.
33. int seconds, nanoseconds;
34. char *timeString;
35.
36. // If we wanted we could collect the 1PPS triggers here
37. bbFetchRaw(
38. id,
39. data, // Collect one raw packet
40. NULL // Not interested in the triggers,
41.);
42.
43. // Return the seconds and nanoseconds of the first sample in the last packet
44. // retrieved.
45. bbQueryTimestamp(id, &seconds, &nanoseconds);
46.
47. // Function in <ctime> which returns a human readable string of the date/time
48. timeString = ctime((time_t*)(&seconds));
49.
50. doSomething();
51. }

Additionally it may be helpful to write a function which determines the time of a single sample using the
returned times from bbQueryTimestamp().

1. /*
2. Retrieve the time of any sample in a packet
3. To do this we need to know the starting time of the packet and
4. the sample we are interested in
5. */
6. void GetSampleTime(
7. unsigned int startSeconds, // In: Seconds returned from QueryTimestamp
8. unsigned int startNanos, // In: Nanoseconds returned from QueryTimestamp
9. unsigned int sample, // In: Sample we are interested in, zero based
10. unsigned int *sampleSeconds, // Out: Seconds for interested sample
11. unsigned int *sampleNanos) // Out: Nanoseconds for interested sample
12. {
13. // Amount of time between any two samples
14. double delTime = 1.0 / 80000000;
15.
16. // Assuming zero based sample, get output nanos
17. unsigned int outs = startSeconds;
18. unsigned int outns = startNanos + delTime * sample;
19.
20. // If nanos are greater than 1 billion, then we wrap
21. if(outns > 1000000000) {

46 Appendix | Test Equipment Plus

22. outs++;
23. outns -= 1000000000;
24. }
25.
26. *sampleSeconds = outs;
27. *sampleNanos = outns;
28. }

Bandwidth Tables
In Native RBW mode, this table shows the possible rbws and their corresponding FFT sizes. As of version
1.0.7 non-native bandwidths do not use this table. Non-native bandwidths can be arbitrary.

Non-Native RBWs and FFT size

It is possible to determine the fft length used by the api when utilizing non-native RBW mode. The
function below returns the FFT length for an arbitrary RBW. A custom flat-top window with variable
bandwidth is built in order to modify the signal bandwidth beyond just FFT length.

1. int non_native_fft_from_rbw(double rbw)
2. {

Native Bandwidths (Hz) FFT size

10.10e6 16

5.050e6 32

 2.525e6 64

1.262e6 128

631.2e3 Largest Real-Time RBW 256

315.6e3 512

157.1e3 1024

78.90e3 2048

39.45e3 4096

19.72e3 8192

9.863e3 16384

4.931e3 32768

2.465e3 Smallest Real-Time RBW 65536

1.232e3 131072

616.45 262144

308.22 524288

154.11 1048576

154.11 1048576

77.05 2097152

38.52 4194304

19.26 8388608

9.63 16777549

4.81 33554432

2.40 67108864

1.204 134217728

0.602 268435456

0.301 536870912

Test Equipment Plus | 47

3. double min_bin_sz = rbw / 3.2;
4. double min_fft = 80.0e6 / min_bin_sz;
5. int order = (int)ceil(log2(min_fft));
6.
7. return pow2(order);
8. }

